test_pytorch_examples.py 19.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import argparse
18
import json
19
import logging
20
import os
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import sys
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import unittest
Aymeric Augustin's avatar
Aymeric Augustin committed
23
from unittest.mock import patch
Aymeric Augustin's avatar
Aymeric Augustin committed
24

Stas Bekman's avatar
Stas Bekman committed
25
26
import torch

27
from transformers import ViTMAEForPreTraining, Wav2Vec2ForPreTraining
28
from transformers.testing_utils import CaptureLogger, TestCasePlus, get_gpu_count, slow, torch_device
29
from transformers.utils import is_apex_available
30

31
32
33

SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
34
35
36
37
38
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
39
        "multiple-choice",
40
        "question-answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
41
42
        "summarization",
        "translation",
43
        "image-classification",
44
        "speech-recognition",
45
        "audio-classification",
46
        "speech-pretraining",
47
        "image-pretraining",
48
        "semantic-segmentation",
49
    ]
50
51
52
53
54
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
55
    import run_audio_classification
Sylvain Gugger's avatar
Sylvain Gugger committed
56
    import run_clm
57
58
    import run_generation
    import run_glue
59
    import run_image_classification
60
    import run_mae
61
    import run_mlm
62
    import run_ner
Sylvain Gugger's avatar
Sylvain Gugger committed
63
    import run_qa as run_squad
64
    import run_semantic_segmentation
65
    import run_seq2seq_qa as run_squad_seq2seq
66
    import run_speech_recognition_ctc
67
    import run_speech_recognition_seq2seq
68
    import run_summarization
69
    import run_swag
70
    import run_translation
71
    import run_wav2vec2_pretraining_no_trainer
Aymeric Augustin's avatar
Aymeric Augustin committed
72

73

74
75
76
logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
77

78

79
80
def get_setup_file():
    parser = argparse.ArgumentParser()
81
    parser.add_argument("-f")
82
83
84
85
    args = parser.parse_args()
    return args.f


86
87
88
89
90
91
92
93
94
95
96
def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


97
def is_cuda_and_apex_available():
98
99
100
101
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()


102
103
104
105
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


106
class ExamplesTests(TestCasePlus):
107
    def test_run_glue(self):
108
109
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
110
            run_glue.py
111
            --model_name_or_path distilbert-base-uncased
112
113
            --output_dir {tmp_dir}
            --overwrite_output_dir
Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
116
117
            --do_train
            --do_eval
118
119
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
120
121
122
123
124
            --learning_rate=1e-4
            --max_steps=10
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
125
            """.split()
126

127
        if is_cuda_and_apex_available():
128
            testargs.append("--fp16")
129

130
        with patch.object(sys, "argv", testargs):
131
132
            run_glue.main()
            result = get_results(tmp_dir)
133
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
134

Sylvain Gugger's avatar
Sylvain Gugger committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    def test_run_clm(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

        if torch.cuda.device_count() > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
160
161
            run_clm.main()
            result = get_results(tmp_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
162
163
            self.assertLess(result["perplexity"], 100)

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def test_run_clm_config_overrides(self):
        # test that config_overrides works, despite the misleading dumps of default un-updated
        # config via tokenizer

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_type gpt2
            --tokenizer_name gpt2
            --train_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --config_overrides n_embd=10,n_head=2
            """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        logger = run_clm.logger
        with patch.object(sys, "argv", testargs):
            with CaptureLogger(logger) as cl:
                run_clm.main()

        self.assertIn('"n_embd": 10', cl.out)
        self.assertIn('"n_head": 2', cl.out)

189
    def test_run_mlm(self):
190
191
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
192
            run_mlm.py
Julien Chaumond's avatar
Julien Chaumond committed
193
            --model_name_or_path distilroberta-base
194
195
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
196
            --output_dir {tmp_dir}
Julien Chaumond's avatar
Julien Chaumond committed
197
198
199
            --overwrite_output_dir
            --do_train
            --do_eval
200
            --prediction_loss_only
Julien Chaumond's avatar
Julien Chaumond committed
201
            --num_train_epochs=1
202
        """.split()
203
204
205

        if torch_device != "cuda":
            testargs.append("--no_cuda")
206

Julien Chaumond's avatar
Julien Chaumond committed
207
        with patch.object(sys, "argv", testargs):
208
209
            run_mlm.main()
            result = get_results(tmp_dir)
210
            self.assertLess(result["perplexity"], 42)
Julien Chaumond's avatar
Julien Chaumond committed
211

212
    def test_run_ner(self):
213
214
215
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

216
217
218
219
220
221
222
223
224
225
226
227
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
228
229
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
230
            --num_train_epochs={epochs}
231
            --seed 7
232
233
234
235
236
237
        """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
238
239
            run_ner.main()
            result = get_results(tmp_dir)
240
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
241
242
            self.assertLess(result["eval_loss"], 0.5)

Sylvain Gugger's avatar
Sylvain Gugger committed
243
    @unittest.skip("Broken, fix me Sourab")
244
    def test_run_squad(self):
245
246
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
Russell Klopfer's avatar
Russell Klopfer committed
247
            run_qa.py
Sylvain Gugger's avatar
Sylvain Gugger committed
248
249
250
251
            --model_name_or_path bert-base-uncased
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
252
253
            --output_dir {tmp_dir}
            --overwrite_output_dir
254
255
256
257
258
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
259
260
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
261
262
        """.split()

263
        with patch.object(sys, "argv", testargs):
264
265
            run_squad.main()
            result = get_results(tmp_dir)
Russell Klopfer's avatar
Russell Klopfer committed
266
267
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    def test_run_squad_seq2seq(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_seq2seq_qa.py
            --model_name_or_path t5-small
            --context_column context
            --question_column question
            --answer_column answers
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
            run_squad_seq2seq.main()
            result = get_results(tmp_dir)
295
296
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    def test_run_swag(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=20
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
317
318
            run_swag.main()
            result = get_results(tmp_dir)
319
320
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)

321
    def test_generation(self):
322
        testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
323

324
        if is_cuda_and_apex_available():
325
326
327
328
329
330
            testargs.append("--fp16")

        model_type, model_name = (
            "--model_type=gpt2",
            "--model_name_or_path=sshleifer/tiny-gpt2",
        )
331
        with patch.object(sys, "argv", testargs + [model_type, model_name]):
332
            result = run_generation.main()
333
            self.assertGreaterEqual(len(result[0]), 10)
334
335

    @slow
336
    def test_run_summarization(self):
337
338
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
339
            run_summarization.py
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
356
            run_summarization.main()
357
            result = get_results(tmp_dir)
358
359
360
361
362
363
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 2)
            self.assertGreaterEqual(result["eval_rougeL"], 7)
            self.assertGreaterEqual(result["eval_rougeLsum"], 7)

    @slow
364
    def test_run_translation(self):
365
366
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
367
            run_translation.py
368
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
369
370
            --source_lang en
            --target_lang ro
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
            --source_lang en_XX
            --target_lang ro_RO
        """.split()

        with patch.object(sys, "argv", testargs):
388
            run_translation.main()
389
            result = get_results(tmp_dir)
390
            self.assertGreaterEqual(result["eval_bleu"], 30)
391
392
393
394
395
396
397

    def test_run_image_classification(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_image_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path google/vit-base-patch16-224-in21k
398
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
399
400
            --do_train
            --do_eval
401
            --learning_rate 1e-4
402
403
404
405
406
407
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
408
            --max_steps 10
409
            --train_val_split 0.1
410
            --seed 42
411
412
413
414
415
416
417
418
419
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_image_classification.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)
420
421
422
423
424
425
426

    def test_run_speech_recognition_ctc(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
427
            --dataset_name hf-internal-testing/librispeech_asr_dummy
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    def test_run_speech_recognition_seq2seq(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_seq2seq.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-speech-encoder-decoder
            --dataset_name hf-internal-testing/librispeech_asr_dummy
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 4
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_seq2seq.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])

481
482
483
484
485
486
487
488
489
490
    def test_run_audio_classification(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_audio_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name anton-l/superb_demo
            --dataset_config_name ks
            --train_split_name test
            --eval_split_name test
491
            --audio_column_name audio
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
            --label_column_name label
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --num_train_epochs 10
            --max_steps 50
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_audio_classification.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
512
513
514
515
516
517
518

    def test_run_wav2vec2_pretraining(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_wav2vec2_pretraining_no_trainer.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
519
            --dataset_name hf-internal-testing/librispeech_asr_dummy
520
521
522
            --dataset_config_names clean
            --dataset_split_names validation
            --learning_rate 1e-4
523
524
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
525
            --preprocessing_num_workers 16
526
            --max_train_steps 2
527
528
529
530
531
532
533
534
535
536
537
            --validation_split_percentage 5
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_wav2vec2_pretraining_no_trainer.main()
            model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

    def test_run_vit_mae_pretraining(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_mae.py
            --output_dir {tmp_dir}
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
            --max_steps 10
            --train_val_split 0.1
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_mae.main()
            model = ViTMAEForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

    def test_run_semantic_segmentation(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_semantic_segmentation.py
            --output_dir {tmp_dir}
            --dataset_name huggingface/semantic-segmentation-test-sample
            --do_train
            --do_eval
            --remove_unused_columns False
            --overwrite_output_dir True
            --max_steps 10
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --seed 32
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_semantic_segmentation.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_overall_accuracy"], 0.1)