test_modeling_longformer.py 25.3 KB
Newer Older
Iz Beltagy's avatar
Iz Beltagy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Iz Beltagy's avatar
Iz Beltagy committed
21
22
23
24
25
26
27
28
29
30
31

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    import torch
    from transformers import (
        LongformerConfig,
        LongformerModel,
        LongformerForMaskedLM,
32
        LongformerForSequenceClassification,
33
        LongformerForTokenClassification,
34
        LongformerForQuestionAnswering,
35
        LongformerForMultipleChoice,
Patrick von Platen's avatar
Patrick von Platen committed
36
        LongformerSelfAttention,
Iz Beltagy's avatar
Iz Beltagy committed
37
38
39
    )


40
class LongformerModelTester:
Iz Beltagy's avatar
Iz Beltagy committed
41
    def __init__(
42
        self, parent,
Iz Beltagy's avatar
Iz Beltagy committed
43
44
    ):
        self.parent = parent
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.attention_window = 4
Iz Beltagy's avatar
Iz Beltagy committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window + 1` locations
        self.key_length = self.attention_window + 1

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = LongformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
Sylvain Gugger's avatar
Sylvain Gugger committed
112
            return_dict=True,
Iz Beltagy's avatar
Iz Beltagy committed
113
114
115
116
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

117
118
119
120
121
122
123
124
    def create_and_check_attention_mask_determinism(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
Sylvain Gugger's avatar
Sylvain Gugger committed
125
126
        output_with_mask = model(input_ids, attention_mask=attention_mask)["last_hidden_state"]
        output_without_mask = model(input_ids)["last_hidden_state"]
127
128
        self.parent.assertTrue(torch.allclose(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], atol=1e-4))

Iz Beltagy's avatar
Iz Beltagy committed
129
130
131
132
133
134
    def create_and_check_longformer_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
135
136
137
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
138
139
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Iz Beltagy's avatar
Iz Beltagy committed
140

141
142
143
144
145
146
147
148
149
150
    def create_and_check_longformer_model_with_global_attention_mask(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
        global_attention_mask = input_mask.clone()
        global_attention_mask[:, input_mask.shape[-1] // 2] = 0
        global_attention_mask = global_attention_mask.to(torch_device)

Sylvain Gugger's avatar
Sylvain Gugger committed
151
        result = model(
152
153
154
155
156
            input_ids,
            attention_mask=input_mask,
            global_attention_mask=global_attention_mask,
            token_type_ids=token_type_ids,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
        result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
        result = model(input_ids, global_attention_mask=global_attention_mask)
159

Stas Bekman's avatar
Stas Bekman committed
160
161
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
162

Iz Beltagy's avatar
Iz Beltagy committed
163
164
165
166
167
168
    def create_and_check_longformer_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
169
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
170
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Iz Beltagy's avatar
Iz Beltagy committed
171

172
173
174
175
176
177
    def create_and_check_longformer_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
178
        result = model(
179
180
            input_ids,
            attention_mask=input_mask,
181
            global_attention_mask=input_mask,
182
183
184
185
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
186
187
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
188

189
190
191
192
193
194
195
    def create_and_check_longformer_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
196
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
197
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
198

199
200
201
202
203
204
205
    def create_and_check_longformer_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
206
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
207
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
208

209
210
211
212
213
214
215
216
217
218
    def create_and_check_longformer_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = LongformerForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
219
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
220
        result = model(
221
222
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
223
            global_attention_mask=multiple_choice_input_mask,
224
225
226
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
227
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
228

Iz Beltagy's avatar
Iz Beltagy committed
229
230
231
232
233
234
235
236
237
238
239
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
240
241
242
243
244
245
246
        global_attention_mask = torch.zeros_like(input_ids)
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
            "global_attention_mask": global_attention_mask,
        }
Iz Beltagy's avatar
Iz Beltagy committed
247
248
        return config, inputs_dict

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    def prepare_config_and_inputs_for_question_answering(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # Replace sep_token_id by some random id
        input_ids[input_ids == config.sep_token_id] = torch.randint(0, config.vocab_size, (1,)).item()
        # Make sure there are exactly three sep_token_id
        input_ids[:, -3:] = config.sep_token_id
        input_mask = torch.ones_like(input_ids)

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

Iz Beltagy's avatar
Iz Beltagy committed
269
270
271
272
273
274
275

@require_torch
class LongformerModelTest(ModelTesterMixin, unittest.TestCase):
    test_pruning = False  # pruning is not supported
    test_headmasking = False  # head masking is not supported
    test_torchscript = False

276
277
278
279
    all_model_classes = (
        (
            LongformerModel,
            LongformerForMaskedLM,
280
281
282
283
            LongformerForSequenceClassification,
            LongformerForQuestionAnswering,
            LongformerForTokenClassification,
            LongformerForMultipleChoice,
284
285
286
287
        )
        if is_torch_available()
        else ()
    )
Iz Beltagy's avatar
Iz Beltagy committed
288
289
290
291
292
293
294
295
296
297
298
299

    def setUp(self):
        self.model_tester = LongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_longformer_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_model(*config_and_inputs)

300
301
302
303
304
305
306
307
    def test_longformer_model_attention_mask_determinism(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)

    def test_longformer_model_global_attention_mask(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_model_with_global_attention_mask(*config_and_inputs)

Iz Beltagy's avatar
Iz Beltagy committed
308
309
310
311
    def test_longformer_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_masked_lm(*config_and_inputs)

312
313
314
315
    def test_longformer_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
        self.model_tester.create_and_check_longformer_for_question_answering(*config_and_inputs)

316
317
318
319
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_sequence_classification(*config_and_inputs)

320
321
322
323
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_token_classification(*config_and_inputs)

324
325
326
327
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_multiple_choice(*config_and_inputs)

Iz Beltagy's avatar
Iz Beltagy committed
328

Patrick von Platen's avatar
Patrick von Platen committed
329
@require_torch
Iz Beltagy's avatar
Iz Beltagy committed
330
class LongformerModelIntegrationTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    def _get_hidden_states(self):
        return torch.tensor(
            [
                [
                    [
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=torch.float32,
            device=torch_device,
        )

    def test_diagonalize(self):
        hidden_states = self._get_hidden_states()
        hidden_states = hidden_states.reshape((1, 8, 4))  # set seq length = 8, hidden dim = 4
        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
        window_overlap_size = chunked_hidden_states.shape[2]
        self.assertTrue(window_overlap_size == 4)

        padded_hidden_states = LongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)

        self.assertTrue(padded_hidden_states.shape[-1] == chunked_hidden_states.shape[-1] + window_overlap_size - 1)

        # first row => [0.4983,  2.6918, -0.0071,  1.0492, 0.0000,  0.0000,  0.0000]
        self.assertTrue(torch.allclose(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], atol=1e-3))
        self.assertTrue(
            torch.allclose(
                padded_hidden_states[0, 0, 0, 4:],
                torch.zeros((3,), device=torch_device, dtype=torch.float32),
                atol=1e-3,
            )
        )
        # last row => [0.0000,  0.0000,  0.0000, 2.0514, -1.1600,  0.5372,  0.2629]
        self.assertTrue(torch.allclose(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], atol=1e-3))
        self.assertTrue(
            torch.allclose(
                padded_hidden_states[0, 0, -1, :3],
                torch.zeros((3,), device=torch_device, dtype=torch.float32),
                atol=1e-3,
            )
        )

    def test_pad_and_transpose_last_two_dims(self):
        hidden_states = self._get_hidden_states()
        self.assertTrue(hidden_states.shape, (1, 8, 4))
        padding = (0, 0, 0, 1)

        padded_hidden_states = LongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, padding)
        self.assertTrue(padded_hidden_states.shape, (1, 8, 5))

        expected_added_dim = torch.zeros((5,), device=torch_device, dtype=torch.float32)
        self.assertTrue(torch.allclose(expected_added_dim, padded_hidden_states[0, -1, :], atol=1e-6))
        self.assertTrue(torch.allclose(hidden_states[0, -1, :], padded_hidden_states.view(1, -1)[0, 24:32], atol=1e-6))

    def test_chunk(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))

        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        # expected slices across chunk and seq length dim
        expected_slice_along_seq_length = torch.tensor(
            [0.4983, -0.7584, -1.6944], device=torch_device, dtype=torch.float32
        )
        expected_slice_along_chunk = torch.tensor(
            [0.4983, -1.8348, -0.7584, 2.0514], device=torch_device, dtype=torch.float32
        )

        self.assertTrue(torch.allclose(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, atol=1e-3))
        self.assertTrue(torch.allclose(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, atol=1e-3))
        self.assertTrue(chunked_hidden_states.shape, (1, 3, 4, 4))

    def test_mask_invalid_locations(self):
        hidden_states = self._get_hidden_states()

        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        hid_states_1 = chunked_hidden_states.clone()
        LongformerSelfAttention._mask_invalid_locations(hid_states_1, 1)
        self.assertTrue(torch.isinf(hid_states_1).sum().item() == 8)

        hid_states_2 = chunked_hidden_states.clone()
        LongformerSelfAttention._mask_invalid_locations(hid_states_2, 2)
        self.assertTrue(torch.isinf(hid_states_2).sum().item() == 24)

        hid_states_3 = chunked_hidden_states.clone()[:, :, :, :3]
        LongformerSelfAttention._mask_invalid_locations(hid_states_3, 2)
        self.assertTrue(torch.isinf(hid_states_3).sum().item() == 24)

        hid_states_4 = chunked_hidden_states.clone()[:, :, 2:, :]
        LongformerSelfAttention._mask_invalid_locations(hid_states_4, 2)
        self.assertTrue(torch.isinf(hid_states_4).sum().item() == 12)

    def test_layer_local_attn(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = self._get_hidden_states()
        batch_size, seq_length, hidden_size = hidden_states.size()
        attention_mask = torch.zeros((batch_size, 1, 1, seq_length), dtype=torch.float32, device=torch_device)
        attention_mask[:, :, :, -2:] = -10000
        output_hidden_states = layer(hidden_states, attention_mask)[0]

        self.assertTrue(output_hidden_states.shape, (1, 4, 8))
        self.assertTrue(
            torch.allclose(
                output_hidden_states[0, 1],
                torch.tensor(
                    [0.0019, 0.0122, -0.0171, -0.0256, -0.0300, 0.0173, -0.0115, 0.0048],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

    def test_layer_global_attn(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
        batch_size, seq_length, hidden_size = hidden_states.size()
        attention_mask = torch.zeros((batch_size, 1, 1, seq_length), dtype=torch.float32, device=torch_device)

        # create attn mask
        attention_mask[0, :, :, -2:] = 10000.0
        attention_mask[0, :, :, -1:] = -10000.0
        attention_mask[1, :, :, 1:] = 10000.0
        output_hidden_states = layer(hidden_states, attention_mask)[0]

        self.assertTrue(output_hidden_states.shape, (2, 4, 8))

        self.assertTrue(
            torch.allclose(
                output_hidden_states[0, 2],
                torch.tensor(
                    [-0.0651, -0.0393, 0.0309, -0.0342, -0.0066, -0.0155, -0.0209, -0.0494],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                output_hidden_states[1, -2],
                torch.tensor(
                    [-0.0405, -0.0384, 0.0396, -0.0374, -0.0341, 0.0136, 0.0014, -0.0571],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

Iz Beltagy's avatar
Iz Beltagy committed
532
533
    @slow
    def test_inference_no_head(self):
534
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
535
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
536

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        # 'Hello world!'
        input_ids = torch.tensor([[0, 20920, 232, 328, 1437, 2]], dtype=torch.long, device=torch_device)
        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        output = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]

        expected_output_slice = torch.tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], device=torch_device)
        self.assertTrue(torch.allclose(output[0, 0, -5:], expected_output_slice, atol=1e-4))
        self.assertTrue(torch.allclose(output_without_mask[0, 0, -5:], expected_output_slice, atol=1e-4))

    @slow
    def test_inference_no_head_long(self):
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
        model.to(torch_device)

Iz Beltagy's avatar
Iz Beltagy committed
552
        # 'Hello world! ' repeated 1000 times
553
554
555
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Iz Beltagy's avatar
Iz Beltagy committed
556
557

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
558
559
        global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device)
        global_attention_mask[:, [1, 4, 21]] = 1  # Set global attention on a few random positions
Iz Beltagy's avatar
Iz Beltagy committed
560

561
        output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]
Iz Beltagy's avatar
Iz Beltagy committed
562

563
564
        expected_output_sum = torch.tensor(74585.8594, device=torch_device)
        expected_output_mean = torch.tensor(0.0243, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
565
566
567
568
        self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
        self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))

    @slow
569
    def test_inference_masked_lm_long(self):
570
        model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
571
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
572
573

        # 'Hello world! ' repeated 1000 times
574
575
576
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Patrick von Platen's avatar
Patrick von Platen committed
577
        input_ids = input_ids.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
578

579
        loss, prediction_scores = model(input_ids, labels=input_ids)
Iz Beltagy's avatar
Iz Beltagy committed
580

581
582
583
        expected_loss = torch.tensor(0.0074, device=torch_device)
        expected_prediction_scores_sum = torch.tensor(-6.1048e08, device=torch_device)
        expected_prediction_scores_mean = torch.tensor(-3.0348, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
584
585
586
587

        self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))