test_trainer_callback.py 9.98 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import shutil
import tempfile
import unittest

from transformers import (
    DefaultFlowCallback,
    EvaluationStrategy,
    PrinterCallback,
    ProgressCallback,
    Trainer,
    TrainerCallback,
    TrainingArguments,
    is_torch_available,
)
from transformers.testing_utils import require_torch


if is_torch_available():
    from transformers.trainer import DEFAULT_CALLBACKS

    from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel


Stas Bekman's avatar
Stas Bekman committed
38
class MyTestTrainerCallback(TrainerCallback):
Sylvain Gugger's avatar
Sylvain Gugger committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    "A callback that registers the events that goes through."

    def __init__(self):
        self.events = []

    def on_init_end(self, args, state, control, **kwargs):
        self.events.append("on_init_end")

    def on_train_begin(self, args, state, control, **kwargs):
        self.events.append("on_train_begin")

    def on_train_end(self, args, state, control, **kwargs):
        self.events.append("on_train_end")

    def on_epoch_begin(self, args, state, control, **kwargs):
        self.events.append("on_epoch_begin")

    def on_epoch_end(self, args, state, control, **kwargs):
        self.events.append("on_epoch_end")

    def on_step_begin(self, args, state, control, **kwargs):
        self.events.append("on_step_begin")

    def on_step_end(self, args, state, control, **kwargs):
        self.events.append("on_step_end")

    def on_evaluate(self, args, state, control, **kwargs):
        self.events.append("on_evaluate")

    def on_save(self, args, state, control, **kwargs):
        self.events.append("on_save")

    def on_log(self, args, state, control, **kwargs):
        self.events.append("on_log")

    def on_prediction_step(self, args, state, control, **kwargs):
        self.events.append("on_prediction_step")


@require_torch
class TrainerCallbackTest(unittest.TestCase):
    def setUp(self):
        self.output_dir = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.output_dir)

    def get_trainer(self, a=0, b=0, train_len=64, eval_len=64, callbacks=None, disable_tqdm=False, **kwargs):
        # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
        # its set to False since the tests later on depend on its value.
        train_dataset = RegressionDataset(length=train_len)
        eval_dataset = RegressionDataset(length=eval_len)
        config = RegressionModelConfig(a=a, b=b)
        model = RegressionPreTrainedModel(config)

        args = TrainingArguments(self.output_dir, disable_tqdm=disable_tqdm, **kwargs)
        return Trainer(
            model,
            args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            callbacks=callbacks,
        )

    def check_callbacks_equality(self, cbs1, cbs2):
        self.assertEqual(len(cbs1), len(cbs2))

        # Order doesn't matter
        cbs1 = list(sorted(cbs1, key=lambda cb: cb.__name__ if isinstance(cb, type) else cb.__class__.__name__))
        cbs2 = list(sorted(cbs2, key=lambda cb: cb.__name__ if isinstance(cb, type) else cb.__class__.__name__))

        for cb1, cb2 in zip(cbs1, cbs2):
            if isinstance(cb1, type) and isinstance(cb2, type):
                self.assertEqual(cb1, cb2)
            elif isinstance(cb1, type) and not isinstance(cb2, type):
                self.assertEqual(cb1, cb2.__class__)
            elif not isinstance(cb1, type) and isinstance(cb2, type):
                self.assertEqual(cb1.__class__, cb2)
            else:
                self.assertEqual(cb1, cb2)

    def get_expected_events(self, trainer):
        expected_events = ["on_init_end", "on_train_begin"]
        step = 0
        train_dl_len = len(trainer.get_eval_dataloader())
        evaluation_events = ["on_prediction_step"] * len(trainer.get_eval_dataloader()) + ["on_log", "on_evaluate"]
        for _ in range(trainer.state.num_train_epochs):
            expected_events.append("on_epoch_begin")
            for _ in range(train_dl_len):
                step += 1
                expected_events += ["on_step_begin", "on_step_end"]
                if step % trainer.args.logging_steps == 0:
                    expected_events.append("on_log")
                if (
                    trainer.args.evaluation_strategy == EvaluationStrategy.STEPS
                    and step % trainer.args.eval_steps == 0
                ):
                    expected_events += evaluation_events.copy()
                if step % trainer.args.save_steps == 0:
                    expected_events.append("on_save")
            expected_events.append("on_epoch_end")
            if trainer.args.evaluation_strategy == EvaluationStrategy.EPOCH:
                expected_events += evaluation_events.copy()
142
        expected_events += ["on_log", "on_train_end"]
Sylvain Gugger's avatar
Sylvain Gugger committed
143
144
145
146
147
148
149
150
        return expected_events

    def test_init_callback(self):
        trainer = self.get_trainer()
        expected_callbacks = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        # Callbacks passed at init are added to the default callbacks
Stas Bekman's avatar
Stas Bekman committed
151
152
        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback])
        expected_callbacks.append(MyTestTrainerCallback)
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
        trainer = self.get_trainer(disable_tqdm=True)
        expected_callbacks = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

    def test_add_remove_callback(self):
        expected_callbacks = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
        trainer = self.get_trainer()

        # We can add, pop, or remove by class name
        trainer.remove_callback(DefaultFlowCallback)
        expected_callbacks.remove(DefaultFlowCallback)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        trainer = self.get_trainer()
        cb = trainer.pop_callback(DefaultFlowCallback)
        self.assertEqual(cb.__class__, DefaultFlowCallback)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        trainer.add_callback(DefaultFlowCallback)
        expected_callbacks.insert(0, DefaultFlowCallback)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        # We can also add, pop, or remove by instance
        trainer = self.get_trainer()
        cb = trainer.callback_handler.callbacks[0]
        trainer.remove_callback(cb)
        expected_callbacks.remove(DefaultFlowCallback)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        trainer = self.get_trainer()
        cb1 = trainer.callback_handler.callbacks[0]
        cb2 = trainer.pop_callback(cb1)
        self.assertEqual(cb1, cb2)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        trainer.add_callback(cb1)
        expected_callbacks.insert(0, DefaultFlowCallback)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

    def test_event_flow(self):
Stas Bekman's avatar
Stas Bekman committed
196
197
198
199
200
201
        import warnings

        # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
        warnings.simplefilter(action="ignore", category=UserWarning)

        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback])
Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
204
205
206
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))

        # Independent log/save/eval
Stas Bekman's avatar
Stas Bekman committed
207
        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], logging_steps=5)
Sylvain Gugger's avatar
Sylvain Gugger committed
208
209
210
211
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))

Stas Bekman's avatar
Stas Bekman committed
212
        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], save_steps=5)
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
216
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))

Stas Bekman's avatar
Stas Bekman committed
217
        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], eval_steps=5, evaluation_strategy="steps")
Sylvain Gugger's avatar
Sylvain Gugger committed
218
219
220
221
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))

Stas Bekman's avatar
Stas Bekman committed
222
        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], evaluation_strategy="epoch")
Sylvain Gugger's avatar
Sylvain Gugger committed
223
224
225
226
227
228
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))

        # A bit of everything
        trainer = self.get_trainer(
Stas Bekman's avatar
Stas Bekman committed
229
230
231
232
233
            callbacks=[MyTestTrainerCallback],
            logging_steps=3,
            save_steps=10,
            eval_steps=5,
            evaluation_strategy="steps",
Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
236
237
        )
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))
238
239
240
241
242
243
244

        # warning should be emitted for duplicated callbacks
        with unittest.mock.patch("transformers.trainer_callback.logger.warn") as warn_mock:
            trainer = self.get_trainer(
                callbacks=[MyTestTrainerCallback, MyTestTrainerCallback],
            )
            assert str(MyTestTrainerCallback) in warn_mock.call_args[0][0]