test_tokenization_reformer.py 9.71 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
# Copyright 2020 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import unittest

19
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
20
from transformers.file_utils import cached_property
21
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
22
23
24
25
26
27
28

from .test_tokenization_common import TokenizerTesterMixin


SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")


29
30
@require_sentencepiece
@require_tokenizers
31
32
33
class ReformerTokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = ReformerTokenizer
34
35
    rust_tokenizer_class = ReformerTokenizerFast
    test_rust_tokenizer = True
36
37
38
39
40
41
42

    def setUp(self):
        super().setUp()

        tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence = "I was born in 92000, and this is fals茅."

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    def test_padding(self, max_length=15):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Simple input
                s = "This is a simple input"
                s2 = ["This is a simple input 1", "This is a simple input 2"]
                p = ("This is a simple input", "This is a pair")
                p2 = [
                    ("This is a simple input 1", "This is a simple input 2"),
                    ("This is a simple pair 1", "This is a simple pair 2"),
                ]

                # Simple input tests
                self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    s2,
                    max_length=max_length,
                    padding="max_length",
                )

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    p2,
                    max_length=max_length,
                    padding="max_length",
                )

109
110
111
112
113
114
115
    def test_full_tokenizer(self):
        tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
Lysandre's avatar
Lysandre committed
116
117
            tokenizer.convert_tokens_to_ids(tokens),
            [285, 46, 10, 170, 382],
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "茅",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
Lysandre's avatar
Lysandre committed
149
150
            ids,
            [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )

    @cached_property
    def big_tokenizer(self):
        return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment")

    @slow
    def test_tokenization_base_easy_symbols(self):
        symbols = "Hello World!"
        original_tokenizer_encodings = [126, 32, 262, 152, 38, 72, 287]

        self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))

    @slow
    def test_tokenization_base_hard_symbols(self):
        symbols = 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
        original_tokenizer_encodings = [
            108,
            265,
            24,
            111,
            4,
            258,
            156,
            35,
            28,
            275,
            3,
            259,
            297,
            260,
            84,
            4,
            35,
            110,
            44,
            8,
            259,
            91,
            268,
            21,
            11,
            209,
            274,
            109,
            266,
            277,
            117,
            86,
            93,
            315,
            258,
            278,
            258,
            277,
            258,
            0,
            258,
            288,
            258,
            319,
            258,
            0,
            258,
            0,
            258,
            0,
            258,
            0,
            258,
            287,
            258,
            315,
            258,
            289,
            258,
            278,
            99,
            269,
            266,
            262,
            8,
            259,
            241,
            4,
            217,
            230,
            268,
            266,
            55,
            168,
            106,
            75,
            193,
            266,
            223,
            27,
            49,
            26,
            282,
            25,
            264,
            299,
            19,
            26,
            0,
            258,
            277,
            117,
            86,
            93,
            176,
            183,
            270,
            11,
            262,
            42,
            61,
            265,
        ]

        self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))

    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
303
    @slow
304
305
    def test_torch_encode_plus_sent_to_model(self):
        import torch
306
307

        from transformers import ReformerConfig, ReformerModel
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

        # Build sequence
        first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt")
        batch_encoded_sequence = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")

        config = ReformerConfig()
        # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
        config.axial_pos_shape = encoded_sequence["input_ids"].shape
        model = ReformerModel(config)

        # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
        assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size

        with torch.no_grad():
            model(**encoded_sequence)
            model(**batch_encoded_sequence)