test_tokenization_fsmt.py 6.26 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
import unittest

from transformers.file_utils import cached_property
Sylvain Gugger's avatar
Sylvain Gugger committed
22
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES, FSMTTokenizer
23
24
25
26
27
from transformers.testing_utils import slow

from .test_tokenization_common import TokenizerTesterMixin


28
29
30
31
# using a different tiny model than the one used for default params defined in init to ensure proper testing
FSMT_TINY2 = "stas/tiny-wmt19-en-ru"


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = FSMTTokenizer

    def setUp(self):
        super().setUp()

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "w</w>",
            "r</w>",
            "t</w>",
            "lo",
            "low",
            "er</w>",
            "low</w>",
            "lowest</w>",
            "newer</w>",
            "wider</w>",
            "<unk>",
        ]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]

        self.langs = ["en", "ru"]
        config = {
            "langs": self.langs,
            "src_vocab_size": 10,
            "tgt_vocab_size": 20,
        }

        self.src_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["src_vocab_file"])
        self.tgt_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["tgt_vocab_file"])
        config_file = os.path.join(self.tmpdirname, "tokenizer_config.json")
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.src_vocab_file, "w") as fp:
            fp.write(json.dumps(vocab_tokens))
        with open(self.tgt_vocab_file, "w") as fp:
            fp.write(json.dumps(vocab_tokens))
        with open(self.merges_file, "w") as fp:
            fp.write("\n".join(merges))
        with open(config_file, "w") as fp:
            fp.write(json.dumps(config))

    @cached_property
    def tokenizer_ru_en(self):
        return FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en")

    @cached_property
    def tokenizer_en_ru(self):
        return FSMTTokenizer.from_pretrained("facebook/wmt19-en-ru")

93
94
95
96
97
98
99
100
101
    def test_online_tokenizer_config(self):
        """this just tests that the online tokenizer files get correctly fetched and
        loaded via its tokenizer_config.json and it's not slow so it's run by normal CI
        """
        tokenizer = FSMTTokenizer.from_pretrained(FSMT_TINY2)
        self.assertListEqual([tokenizer.src_lang, tokenizer.tgt_lang], ["en", "ru"])
        self.assertEqual(tokenizer.src_vocab_size, 21)
        self.assertEqual(tokenizer.tgt_vocab_size, 21)

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    def test_full_tokenizer(self):
        """ Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
        tokenizer = FSMTTokenizer(self.langs, self.src_vocab_file, self.tgt_vocab_file, self.merges_file)

        text = "lower"
        bpe_tokens = ["low", "er</w>"]
        tokens = tokenizer.tokenize(text)
        self.assertListEqual(tokens, bpe_tokens)

        input_tokens = tokens + ["<unk>"]
        input_bpe_tokens = [14, 15, 20]
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)

    @slow
    def test_sequence_builders(self):
        tokenizer = self.tokenizer_ru_en

        text = tokenizer.encode("sequence builders", add_special_tokens=False)
        text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)

        encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
        encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)

        assert encoded_sentence == text + [2]
        assert encoded_pair == text + [2] + text_2 + [2]

    @slow
    def test_match_encode_decode(self):
        tokenizer_enc = self.tokenizer_en_ru
        tokenizer_dec = self.tokenizer_ru_en

        targets = [
            [
                "Here's a little song I wrote. Don't worry, be happy.",
                [2470, 39, 11, 2349, 7222, 70, 5979, 7, 8450, 1050, 13160, 5, 26, 6445, 7, 2],
            ],
            ["This is it. No more. I'm done!", [132, 21, 37, 7, 1434, 86, 7, 70, 6476, 1305, 427, 2]],
        ]

        # if data needs to be recreated or added, run:
        # import torch
        # model = torch.hub.load("pytorch/fairseq", "transformer.wmt19.en-ru", checkpoint_file="model4.pt", tokenizer="moses", bpe="fastbpe")
        # for src_text, _ in targets: print(f"""[\n"{src_text}",\n {model.encode(src_text).tolist()}\n],""")

        for src_text, tgt_input_ids in targets:
147
148
            encoded_ids = tokenizer_enc.encode(src_text, return_tensors=None)
            self.assertListEqual(encoded_ids, tgt_input_ids)
149
150

            # and decode backward, using the reversed languages model
151
            decoded_text = tokenizer_dec.decode(encoded_ids, skip_special_tokens=True)
152
153
            self.assertEqual(decoded_text, src_text)

154
155
156
157
158
159
160
    @slow
    def test_tokenizer_lower(self):
        tokenizer = FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en", do_lower_case=True)
        tokens = tokenizer.tokenize("USA is United States of America")
        expected = ["us", "a</w>", "is</w>", "un", "i", "ted</w>", "st", "ates</w>", "of</w>", "am", "er", "ica</w>"]
        self.assertListEqual(tokens, expected)

161
162
163
164
165
166
167
    @unittest.skip("FSMTConfig.__init__  requires non-optional args")
    def test_torch_encode_plus_sent_to_model(self):
        pass

    @unittest.skip("FSMTConfig.__init__  requires non-optional args")
    def test_np_encode_plus_sent_to_model(self):
        pass