test_tokenization_bert_generation.py 6.07 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import unittest

20
from transformers import BertGenerationTokenizer
21
from transformers.file_utils import cached_property
22
from transformers.testing_utils import require_sentencepiece, require_torch, slow
23
24
25
26
27
28
29
30
31

from .test_tokenization_common import TokenizerTesterMixin


SPIECE_UNDERLINE = "▁"

SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")


32
@require_sentencepiece
Patrick von Platen's avatar
Patrick von Platen committed
33
class BertGenerationTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    tokenizer_class = BertGenerationTokenizer

    def setUp(self):
        super().setUp()

        tokenizer = BertGenerationTokenizer(SAMPLE_VOCAB, keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
        tokenizer = BertGenerationTokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [285, 46, 10, 170, 382],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "é",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )

    @cached_property
    def big_tokenizer(self):
        return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")

    @slow
    def test_tokenization_base_easy_symbols(self):
        symbols = "Hello World!"
        original_tokenizer_encodings = [18536, 2260, 101]

        self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))

    @slow
    def test_tokenization_base_hard_symbols(self):
        symbols = 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
        original_tokenizer_encodings = [
            871,
            419,
            358,
            946,
            991,
            2521,
            452,
            358,
            1357,
            387,
            7751,
            3536,
            112,
            985,
            456,
            126,
            865,
            938,
            5400,
            5734,
            458,
            1368,
            467,
            786,
            2462,
            5246,
            1159,
            633,
            865,
            4519,
            457,
            582,
            852,
            2557,
            427,
            916,
            508,
            405,
            34324,
            497,
            391,
            408,
            11342,
            1244,
            385,
            100,
            938,
            985,
            456,
            574,
            362,
            12597,
            3200,
            3129,
            1172,
        ]

        self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))

    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
190
    @slow
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    def test_torch_encode_plus_sent_to_model(self):
        import torch

        from transformers import BertGenerationConfig, BertGenerationEncoder

        # Build sequence
        first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt", return_token_type_ids=False)
        batch_encoded_sequence = self.big_tokenizer.batch_encode_plus(
            [sequence + " " + sequence], return_tensors="pt", return_token_type_ids=False
        )

        config = BertGenerationConfig()
        model = BertGenerationEncoder(config)

        assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size

        with torch.no_grad():
            model(**encoded_sequence)
            model(**batch_encoded_sequence)