test_modeling_tf_lxmert.py 30.4 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15

16
17
18
19
20
21
22
23
24
25
26
27
28
import tempfile
import unittest

from transformers import LxmertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow

from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor


if is_tf_available():
    import tensorflow as tf

Sylvain Gugger's avatar
Sylvain Gugger committed
29
    from transformers.models.lxmert.modeling_tf_lxmert import TFLxmertForPreTraining, TFLxmertModel
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498


class TFLxmertModelTester(object):
    def __init__(
        self,
        parent,
        vocab_size=300,
        hidden_size=28,
        num_attention_heads=2,
        num_labels=2,
        intermediate_size=64,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        pad_token_id=0,
        num_qa_labels=30,
        num_object_labels=16,
        num_attr_labels=4,
        num_visual_features=10,
        l_layers=2,
        x_layers=1,
        r_layers=1,
        visual_feat_dim=128,
        visual_pos_dim=4,
        visual_loss_normalizer=6.67,
        seq_length=20,
        batch_size=8,
        is_training=True,
        task_matched=True,
        task_mask_lm=True,
        task_obj_predict=True,
        task_qa=True,
        visual_obj_loss=True,
        visual_attr_loss=True,
        visual_feat_loss=True,
        use_token_type_ids=True,
        use_lang_mask=True,
        output_attentions=False,
        output_hidden_states=False,
        scope=None,
    ):
        self.parent = parent
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_labels = num_labels
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.pad_token_id = pad_token_id
        self.num_qa_labels = num_qa_labels
        self.num_object_labels = num_object_labels
        self.num_attr_labels = num_attr_labels
        self.l_layers = l_layers
        self.x_layers = x_layers
        self.r_layers = r_layers
        self.visual_feat_dim = visual_feat_dim
        self.visual_pos_dim = visual_pos_dim
        self.visual_loss_normalizer = visual_loss_normalizer
        self.seq_length = seq_length
        self.batch_size = batch_size
        self.is_training = is_training
        self.use_lang_mask = use_lang_mask
        self.task_matched = task_matched
        self.task_mask_lm = task_mask_lm
        self.task_obj_predict = task_obj_predict
        self.task_qa = task_qa
        self.visual_obj_loss = visual_obj_loss
        self.visual_attr_loss = visual_attr_loss
        self.visual_feat_loss = visual_feat_loss
        self.num_visual_features = num_visual_features
        self.use_token_type_ids = use_token_type_ids
        self.output_attentions = output_attentions
        self.output_hidden_states = output_hidden_states
        self.scope = scope
        self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}

    def prepare_config_and_inputs(self):
        output_attentions = self.output_attentions
        input_ids = ids_tensor([self.batch_size, self.seq_length], vocab_size=self.vocab_size)
        visual_feats = tf.random.uniform((self.batch_size, self.num_visual_features, self.visual_feat_dim))
        bounding_boxes = tf.random.uniform((self.batch_size, self.num_visual_features, 4))

        input_mask = None
        if self.use_lang_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
        obj_labels = None
        if self.task_obj_predict:
            obj_labels = {}
        if self.visual_attr_loss and self.task_obj_predict:
            obj_labels["attr"] = (
                ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels),
                ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels),
            )
        if self.visual_feat_loss and self.task_obj_predict:
            obj_labels["feat"] = (
                ids_tensor(
                    [self.batch_size, self.num_visual_features, self.visual_feat_dim], self.num_visual_features
                ),
                ids_tensor([self.batch_size, self.num_visual_features], self.num_visual_features),
            )
        if self.visual_obj_loss and self.task_obj_predict:
            obj_labels["obj"] = (
                ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels),
                ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels),
            )
        ans = None
        if self.task_qa:
            ans = ids_tensor([self.batch_size], self.num_qa_labels)
        masked_lm_labels = None
        if self.task_mask_lm:
            masked_lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        matched_label = None
        if self.task_matched:
            matched_label = ids_tensor([self.batch_size], self.num_labels)

        config = LxmertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_attention_heads=self.num_attention_heads,
            num_labels=self.num_labels,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            layer_norm_eps=self.layer_norm_eps,
            pad_token_id=self.pad_token_id,
            num_qa_labels=self.num_qa_labels,
            num_object_labels=self.num_object_labels,
            num_attr_labels=self.num_attr_labels,
            l_layers=self.l_layers,
            x_layers=self.x_layers,
            r_layers=self.r_layers,
            visual_feat_dim=self.visual_feat_dim,
            visual_pos_dim=self.visual_pos_dim,
            visual_loss_normalizer=self.visual_loss_normalizer,
            task_matched=self.task_matched,
            task_mask_lm=self.task_mask_lm,
            task_obj_predict=self.task_obj_predict,
            task_qa=self.task_qa,
            visual_obj_loss=self.visual_obj_loss,
            visual_attr_loss=self.visual_attr_loss,
            visual_feat_loss=self.visual_feat_loss,
            output_attentions=self.output_attentions,
            output_hidden_states=self.output_hidden_states,
        )

        return (
            config,
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids,
            input_mask,
            obj_labels,
            masked_lm_labels,
            matched_label,
            ans,
            output_attentions,
        )

    def create_and_check_lxmert_model(
        self,
        config,
        input_ids,
        visual_feats,
        bounding_boxes,
        token_type_ids,
        input_mask,
        obj_labels,
        masked_lm_labels,
        matched_label,
        ans,
        output_attentions,
    ):
        model = TFLxmertModel(config=config)
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            output_attentions=output_attentions,
        )
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            output_attentions=not output_attentions,
        )
        result = model(input_ids, visual_feats, bounding_boxes, return_dict=False)
        result = model(input_ids, visual_feats, bounding_boxes, return_dict=True)

        self.parent.assertEqual(result.language_output.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(
            result.vision_output.shape, (self.batch_size, self.num_visual_features, self.hidden_size)
        )
        self.parent.assertEqual(result.pooled_output.shape, (self.batch_size, self.hidden_size))

    def prepare_config_and_inputs_for_common(self, return_obj_labels=False):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids,
            input_mask,
            obj_labels,
            masked_lm_labels,
            matched_label,
            ans,
            output_attentions,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "visual_feats": visual_feats,
            "visual_pos": bounding_boxes,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
        }

        if return_obj_labels:
            inputs_dict["obj_labels"] = obj_labels

        return config, inputs_dict

    def create_and_check_lxmert_for_pretraining(
        self,
        config,
        input_ids,
        visual_feats,
        bounding_boxes,
        token_type_ids,
        input_mask,
        obj_labels,
        masked_lm_labels,
        matched_label,
        ans,
        output_attentions,
    ):
        model = TFLxmertForPreTraining(config=config)
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            masked_lm_labels=masked_lm_labels,
            obj_labels=obj_labels,
            matched_label=matched_label,
            ans=ans,
            output_attentions=output_attentions,
        )
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            masked_lm_labels=masked_lm_labels,
            output_attentions=not output_attentions,
            return_dict=False,
        )
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            masked_lm_labels=masked_lm_labels,
        )
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            obj_labels=obj_labels,
        )
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            matched_label=matched_label,
        )
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            ans=ans,
        )
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            masked_lm_labels=masked_lm_labels,
            obj_labels=obj_labels,
            matched_label=matched_label,
            ans=ans,
            output_attentions=not output_attentions,
        )

        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))


@require_tf
class TFLxmertModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (TFLxmertModel, TFLxmertForPreTraining) if is_tf_available() else ()

    def setUp(self):
        self.model_tester = TFLxmertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LxmertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_lxmert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lxmert_model(*config_and_inputs)

    def test_lxmert_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lxmert_for_pretraining(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in ["unc-nlp/lxmert-base-uncased"]:
            model = TFLxmertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        encoder_seq_length = (
            self.model_tester.encoder_seq_length
            if hasattr(self.model_tester, "encoder_seq_length")
            else self.model_tester.seq_length
        )
        encoder_key_length = (
            self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1])

            self.assertEqual(model.config.output_hidden_states, False)

            self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
            self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
            self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"])

            attentions = [language_attentions, vision_attentions, cross_encoder_attentions]
            attention_shapes = [
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                [
                    self.model_tester.num_attention_heads,
                    self.model_tester.num_visual_features,
                    self.model_tester.num_visual_features,
                ],
                [self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features],
            ]

            for attention, attention_shape in zip(attentions, attention_shapes):
                self.assertListEqual(list(attention[0].shape[-3:]), attention_shape)
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))

            # 2 hidden states were added
            self.assertEqual(out_len + 2, len(outputs))
            language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1])
            self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
            self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
            self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"])

            attentions = [language_attentions, vision_attentions, cross_encoder_attentions]
            attention_shapes = [
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                [
                    self.model_tester.num_attention_heads,
                    self.model_tester.num_visual_features,
                    self.model_tester.num_visual_features,
                ],
                [self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features],
            ]

            for attention, attention_shape in zip(attentions, attention_shapes):
                self.assertListEqual(list(attention[0].shape[-3:]), attention_shape)

    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_hidden_states_output(config, inputs_dict, model_class):
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            language_hidden_states, vision_hidden_states = outputs[-2], outputs[-1]

            self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1)
            self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1)

            seq_length = self.model_tester.seq_length
            num_visual_features = self.model_tester.num_visual_features

            self.assertListEqual(
                list(language_hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )
            self.assertListEqual(
                list(vision_hidden_states[0].shape[-2:]),
                [num_visual_features, self.model_tester.hidden_size],
            )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

    def test_pt_tf_model_equivalence(self):
        from transformers import is_torch_available

        if not is_torch_available():
            return

        import torch

        import transformers

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
                return_obj_labels="PreTraining" in model_class.__name__
            )

499
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
            pt_model_class = getattr(transformers, pt_model_class_name)

            config.output_hidden_states = True
            config.task_obj_predict = False

            tf_model = model_class(config)
            pt_model = pt_model_class(config)

            # Check we can load pt model in tf and vice-versa with model => model functions

            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class)
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()

            # Delete obj labels as we want to compute the hidden states and not the loss

            if "obj_labels" in inputs_dict:
                del inputs_dict["obj_labels"]

            def torch_type(key):
                if key in ("visual_feats", "visual_pos"):
                    return torch.float32
                else:
                    return torch.long

            def recursive_numpy_convert(iterable):
                return_dict = {}
                for key, value in iterable.items():
                    if isinstance(value, dict):
                        return_dict[key] = recursive_numpy_convert(value)
                    else:
                        if isinstance(value, (list, tuple)):
                            return_dict[key] = (
                                torch.from_numpy(iter_value.numpy()).to(torch_type(key)) for iter_value in value
                            )
                        else:
                            return_dict[key] = torch.from_numpy(value.numpy()).to(torch_type(key))
                return return_dict

            pt_inputs_dict = recursive_numpy_convert(self._prepare_for_class(inputs_dict, model_class))

            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False)
            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()

            import numpy as np

            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0

            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
            # Debug info (remove when fixed)
            if max_diff >= 2e-2:
                print("===")
                print(model_class)
                print(config)
                print(inputs_dict)
                print(pt_inputs_dict)
            self.assertLessEqual(max_diff, 6e-2)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                import os

                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            pt_inputs_dict = dict(
                (name, torch.from_numpy(key.numpy()).to(torch.long))
                for name, key in self._prepare_for_class(inputs_dict, model_class).items()
            )

            for key, value in pt_inputs_dict.items():
                if key in ("visual_feats", "visual_pos"):
                    pt_inputs_dict[key] = value.to(torch.float32)
                else:
                    pt_inputs_dict[key] = value.to(torch.long)

            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
            tfo = tf_model(self._prepare_for_class(inputs_dict, model_class))
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

            max_diff = np.amax(np.abs(tfo - pto))
            self.assertLessEqual(max_diff, 6e-2)

    def test_save_load(self):
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
                return_obj_labels="PreTraining" in model_class.__name__
            )

            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
                after_outputs = model(self._prepare_for_class(inputs_dict, model_class))

                self.assert_outputs_same(after_outputs, outputs)

    def test_compile_tf_model(self):
        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common(
                return_obj_labels="PreTraining" in model_class.__name__
            )

            input_ids = tf.keras.Input(
                batch_shape=(self.model_tester.batch_size, self.model_tester.seq_length),
                name="input_ids",
                dtype="int32",
            )
            visual_feats = tf.keras.Input(
                batch_shape=(
                    self.model_tester.batch_size,
                    self.model_tester.num_visual_features,
                    self.model_tester.visual_feat_dim,
                ),
                name="visual_feats",
                dtype="int32",
            )
            visual_pos = tf.keras.Input(
                batch_shape=(self.model_tester.batch_size, self.model_tester.num_visual_features, 4),
                name="visual_pos",
                dtype="int32",
            )

            # Prepare our model
            model = model_class(config)

            # Let's load it from the disk to be sure we can use pretrained weights
            with tempfile.TemporaryDirectory() as tmpdirname:
                outputs = model(self._prepare_for_class(inputs_dict, model_class))  # build the model
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)

            outputs_dict = model(input_ids, visual_feats, visual_pos)
            hidden_states = outputs_dict[0]

            # Add a dense layer on top to test integration with other keras modules
            outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

            # Compile extended model
            extended_model = tf.keras.Model(inputs=[input_ids, visual_feats, visual_pos], outputs=[outputs])
            extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
Lysandre Debut's avatar
Lysandre Debut committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

    @slow
    def test_saved_model_with_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            model._saved_model_inputs_spec = None
            model._set_save_spec(class_inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                tf.saved_model.save(model, tmpdirname)
                model = tf.keras.models.load_model(tmpdirname)
                outputs = model(class_inputs_dict)

697
698
                language_hidden_states = outputs["language_hidden_states"]
                vision_hidden_states = outputs["vision_hidden_states"]
Lysandre Debut's avatar
Lysandre Debut committed
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

                self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1)
                self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1)

                seq_length = self.model_tester.seq_length
                num_visual_features = self.model_tester.num_visual_features

                self.assertListEqual(
                    list(language_hidden_states[0].shape[-2:]),
                    [seq_length, self.model_tester.hidden_size],
                )
                self.assertListEqual(
                    list(vision_hidden_states[0].shape[-2:]),
                    [num_visual_features, self.model_tester.hidden_size],
                )

    @slow
    def test_saved_model_with_attentions_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True

        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            model._saved_model_inputs_spec = None
            model._set_save_spec(class_inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                tf.saved_model.save(model, tmpdirname)
                model = tf.keras.models.load_model(tmpdirname)
                outputs = model(class_inputs_dict)

734
735
736
                language_attentions = outputs["language_attentions"]
                vision_attentions = outputs["vision_attentions"]
                cross_encoder_attentions = outputs["cross_encoder_attentions"]
Lysandre Debut's avatar
Lysandre Debut committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

                self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
                self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
                self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"])

                attentions = [language_attentions, vision_attentions, cross_encoder_attentions]
                attention_shapes = [
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    [
                        self.model_tester.num_attention_heads,
                        self.model_tester.num_visual_features,
                        self.model_tester.num_visual_features,
                    ],
                    [self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features],
                ]

                for attention, attention_shape in zip(attentions, attention_shapes):
                    self.assertListEqual(list(attention[0].shape[-3:]), attention_shape)