test_modeling_tf_dpr.py 11.1 KB
Newer Older
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15

16
import tempfile
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import unittest

from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow

from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor


if is_tf_available():
    import numpy
    import tensorflow as tf

    from transformers import (
        TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
        TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
        TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
        BertConfig,
        DPRConfig,
        TFDPRContextEncoder,
        TFDPRQuestionEncoder,
        TFDPRReader,
    )


class TFDPRModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
        projection_dim=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
        self.projection_dim = projection_dim

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor(
                [self.batch_size, self.seq_length], vocab_size=2
            )  # follow test_modeling_tf_ctrl.py

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = BertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )
        config = DPRConfig(projection_dim=self.projection_dim, **config.to_dict())

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_dpr_context_encoder(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDPRContextEncoder(config=config)
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
138
        result = model(input_ids)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
139
140
141
142
143
144
145
146
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))

    def create_and_check_dpr_question_encoder(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDPRQuestionEncoder(config=config)
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
147
        result = model(input_ids)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
148
149
150
151
152
153
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))

    def create_and_check_dpr_reader(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDPRReader(config=config)
154
        result = model(input_ids, attention_mask=input_mask)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids}
        return config, inputs_dict


@require_tf
class TFDPRModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            TFDPRContextEncoder,
            TFDPRQuestionEncoder,
            TFDPRReader,
        )
        if is_tf_available()
        else ()
    )

    test_resize_embeddings = False
    test_missing_keys = False
    test_pruning = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = TFDPRModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DPRConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_dpr_context_encoder_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_dpr_context_encoder(*config_and_inputs)

    def test_dpr_question_encoder_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_dpr_question_encoder(*config_and_inputs)

    def test_dpr_reader_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_dpr_reader(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
215
            model = TFDPRContextEncoder.from_pretrained(model_name)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
216
217
218
            self.assertIsNotNone(model)

        for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
219
            model = TFDPRContextEncoder.from_pretrained(model_name)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
220
221
222
            self.assertIsNotNone(model)

        for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
223
            model = TFDPRQuestionEncoder.from_pretrained(model_name)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
224
225
226
            self.assertIsNotNone(model)

        for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
227
            model = TFDPRReader.from_pretrained(model_name)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
228
229
            self.assertIsNotNone(model)

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    @slow
    def test_saved_model_with_attentions_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True

        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)

        for model_class in self.all_model_classes:
            print(model_class)
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            num_out = len(model(class_inputs_dict))
            model._saved_model_inputs_spec = None
            model._set_save_spec(class_inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                tf.saved_model.save(model, tmpdirname)
                model = tf.keras.models.load_model(tmpdirname)
                outputs = model(class_inputs_dict)

                if self.is_encoder_decoder:
                    output = outputs["encoder_attentions"] if isinstance(outputs, dict) else outputs[-1]
                else:
                    output = outputs["attentions"] if isinstance(outputs, dict) else outputs[-1]

                attentions = [t.numpy() for t in output]
                self.assertEqual(len(outputs), num_out)
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )

Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
264
265
266
267
268

@require_tf
class TFDPRModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head(self):
269
        model = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

        input_ids = tf.constant(
            [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]]
        )  # [CLS] hello, is my dog cute? [SEP]
        output = model(input_ids)[0]  # embedding shape = (1, 768)
        # compare the actual values for a slice.
        expected_slice = tf.constant(
            [
                [
                    0.03236253,
                    0.12753335,
                    0.16818509,
                    0.00279786,
                    0.3896933,
                    0.24264945,
                    0.2178971,
                    -0.02335227,
                    -0.08481959,
                    -0.14324117,
                ]
            ]
        )
        self.assertTrue(numpy.allclose(output[:, :10].numpy(), expected_slice.numpy(), atol=1e-4))