test_modeling_roberta.py 17.8 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import unittest
18

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_generation_utils import GenerationTesterMixin
24
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
    import torch
29

30
31
    from transformers import (
        RobertaConfig,
32
        RobertaForCausalLM,
33
        RobertaForMaskedLM,
34
35
        RobertaForMultipleChoice,
        RobertaForQuestionAnswering,
36
37
        RobertaForSequenceClassification,
        RobertaForTokenClassification,
38
39
        RobertaModel,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    from transformers.models.roberta.modeling_roberta import (
41
42
43
        ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
        RobertaEmbeddings,
        create_position_ids_from_input_ids,
44
    )
45
46


47
48
class RobertaModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
49
50
        self,
        parent,
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
80
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = RobertaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_model(
138
139
140
141
142
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
143
144
145
146
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

Stas Bekman's avatar
Stas Bekman committed
147
148
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = RobertaModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = RobertaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_for_masked_lm(
202
203
204
205
206
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
207
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
208
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
209

210
    def create_and_check_for_token_classification(
211
212
213
214
215
216
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = RobertaForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
217
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
218
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
219

220
    def create_and_check_for_multiple_choice(
221
222
223
224
225
226
227
228
229
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = RobertaForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
230
        result = model(
231
232
233
234
235
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
236
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
237

238
    def create_and_check_for_question_answering(
239
240
241
242
243
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
244
        result = model(
245
246
247
248
249
250
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
251
252
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


269
@require_torch
270
class RobertaModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
271

272
273
    all_model_classes = (
        (
274
            RobertaForCausalLM,
275
276
277
278
279
280
281
282
283
284
            RobertaForMaskedLM,
            RobertaModel,
            RobertaForSequenceClassification,
            RobertaForTokenClassification,
            RobertaForMultipleChoice,
            RobertaForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
285
    all_generative_model_classes = (RobertaForCausalLM,) if is_torch_available() else ()
286
287

    def setUp(self):
288
        self.model_tester = RobertaModelTester(self)
289
290
291
292
293
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

294
    def test_model(self):
295
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
296
297
        self.model_tester.create_and_check_model(*config_and_inputs)

298
299
300
301
302
303
    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    def test_model_as_decoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)

    def test_model_as_decoder_with_default_input_mask(self):
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

        self.model_tester.create_and_check_model_as_decoder(
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
339
340
341

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
342
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
343

Lysandre's avatar
Lysandre committed
344
345
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
346
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
347
348
349

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
350
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
Lysandre's avatar
Lysandre committed
351
352
353

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
354
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
Lysandre's avatar
Lysandre committed
355

356
    @slow
357
    def test_model_from_pretrained(self):
358
        for model_name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
359
            model = RobertaModel.from_pretrained(model_name)
360
361
            self.assertIsNotNone(model)

Dom Hudson's avatar
Dom Hudson committed
362
    def test_create_position_ids_respects_padding_index(self):
Lysandre's avatar
Lysandre committed
363
        """Ensure that the default position ids only assign a sequential . This is a regression
Dom Hudson's avatar
Dom Hudson committed
364
365
366
367
368
369
370
371
372
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        model = RobertaEmbeddings(config=config)

        input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
373
374
375
        expected_positions = torch.as_tensor(
            [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
        )
Dom Hudson's avatar
Dom Hudson committed
376

Sam Shleifer's avatar
Sam Shleifer committed
377
        position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
378
        self.assertEqual(position_ids.shape, expected_positions.shape)
Dom Hudson's avatar
Dom Hudson committed
379
380
381
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))

    def test_create_position_ids_from_inputs_embeds(self):
Lysandre's avatar
Lysandre committed
382
        """Ensure that the default position ids only assign a sequential . This is a regression
Dom Hudson's avatar
Dom Hudson committed
383
384
385
386
387
388
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
389
390
391
392
393
394
395
396
397
398
399
        embeddings = RobertaEmbeddings(config=config)

        inputs_embeds = torch.Tensor(2, 4, 30)
        expected_single_positions = [
            0 + embeddings.padding_idx + 1,
            1 + embeddings.padding_idx + 1,
            2 + embeddings.padding_idx + 1,
            3 + embeddings.padding_idx + 1,
        ]
        expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
        position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
400
401
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
402
403


Lysandre Debut's avatar
Lysandre Debut committed
404
@require_torch
405
class RobertaModelIntegrationTest(unittest.TestCase):
406
    @slow
407
    def test_inference_masked_lm(self):
408
        model = RobertaForMaskedLM.from_pretrained("roberta-base")
409

410
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
411
412
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 11, 50265))
413
        self.assertEqual(output.shape, expected_shape)
414
        # compare the actual values for a slice.
415
416
        expected_slice = torch.tensor(
            [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
417
        )
418
419
420
421
422
423

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
        # roberta.eval()
        # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
424

425
    @slow
426
    def test_inference_no_head(self):
427
        model = RobertaModel.from_pretrained("roberta-base")
428

429
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
430
431
        output = model(input_ids)[0]
        # compare the actual values for a slice.
432
433
        expected_slice = torch.tensor(
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
434
        )
435
436
437
438
439
440

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
        # roberta.eval()
        # expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach()

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
441

442
    @slow
443
    def test_inference_classification_head(self):
444
        model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
445

446
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
447
448
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 3))
449
        self.assertEqual(output.shape, expected_shape)
450
451
452
453
454
455
456
        expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]])

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
        # roberta.eval()
        # expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach()

        self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))