test_modeling_longformer.py 29.4 KB
Newer Older
Iz Beltagy's avatar
Iz Beltagy committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Iz Beltagy's avatar
Iz Beltagy committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
Iz Beltagy's avatar
Iz Beltagy committed
21
22

from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Iz Beltagy's avatar
Iz Beltagy committed
24
25
26
27


if is_torch_available():
    import torch
28

Iz Beltagy's avatar
Iz Beltagy committed
29
30
31
    from transformers import (
        LongformerConfig,
        LongformerForMaskedLM,
32
33
        LongformerForMultipleChoice,
        LongformerForQuestionAnswering,
34
        LongformerForSequenceClassification,
35
        LongformerForTokenClassification,
36
        LongformerModel,
Patrick von Platen's avatar
Patrick von Platen committed
37
        LongformerSelfAttention,
Iz Beltagy's avatar
Iz Beltagy committed
38
39
40
    )


41
class LongformerModelTester:
Iz Beltagy's avatar
Iz Beltagy committed
42
    def __init__(
Lysandre's avatar
Lysandre committed
43
44
        self,
        parent,
Iz Beltagy's avatar
Iz Beltagy committed
45
46
    ):
        self.parent = parent
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.attention_window = 4
Iz Beltagy's avatar
Iz Beltagy committed
69
70
71
72
73

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window + 1` locations
74
75
        # (assuming no token with global attention, otherwise the last dimension of attentions
        # is x + self.attention_window + 1, where x is the number of tokens with global attention)
Iz Beltagy's avatar
Iz Beltagy committed
76
77
78
79
80
81
82
83
84
85
86
87
88
        self.key_length = self.attention_window + 1

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
89
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Iz Beltagy's avatar
Iz Beltagy committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = LongformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

120
121
122
123
124
125
126
127
    def create_and_check_attention_mask_determinism(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
        output_with_mask = model(input_ids, attention_mask=attention_mask)["last_hidden_state"]
        output_without_mask = model(input_ids)["last_hidden_state"]
130
131
        self.parent.assertTrue(torch.allclose(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], atol=1e-4))

132
    def create_and_check_model(
Iz Beltagy's avatar
Iz Beltagy committed
133
134
135
136
137
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
138
139
140
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
141
142
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Iz Beltagy's avatar
Iz Beltagy committed
143

144
    def create_and_check_model_with_global_attention_mask(
145
146
147
148
149
150
151
152
153
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
        global_attention_mask = input_mask.clone()
        global_attention_mask[:, input_mask.shape[-1] // 2] = 0
        global_attention_mask = global_attention_mask.to(torch_device)

Sylvain Gugger's avatar
Sylvain Gugger committed
154
        result = model(
155
156
157
158
159
            input_ids,
            attention_mask=input_mask,
            global_attention_mask=global_attention_mask,
            token_type_ids=token_type_ids,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
        result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
        result = model(input_ids, global_attention_mask=global_attention_mask)
162

Stas Bekman's avatar
Stas Bekman committed
163
164
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
165

166
    def create_and_check_for_masked_lm(
Iz Beltagy's avatar
Iz Beltagy committed
167
168
169
170
171
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
172
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
173
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Iz Beltagy's avatar
Iz Beltagy committed
174

175
    def create_and_check_for_question_answering(
176
177
178
179
180
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
181
        result = model(
182
183
            input_ids,
            attention_mask=input_mask,
184
            global_attention_mask=input_mask,
185
186
187
188
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
189
190
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
191

192
    def create_and_check_for_sequence_classification(
193
194
195
196
197
198
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
199
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
200
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
201

202
    def create_and_check_for_token_classification(
203
204
205
206
207
208
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
209
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
210
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
211

212
    def create_and_check_for_multiple_choice(
213
214
215
216
217
218
219
220
221
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = LongformerForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
222
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
223
        result = model(
224
225
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
226
            global_attention_mask=multiple_choice_input_mask,
227
228
229
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
230
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
231

Iz Beltagy's avatar
Iz Beltagy committed
232
233
234
235
236
237
238
239
240
241
242
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
243
244
245
246
247
248
249
        global_attention_mask = torch.zeros_like(input_ids)
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
            "global_attention_mask": global_attention_mask,
        }
Iz Beltagy's avatar
Iz Beltagy committed
250
251
        return config, inputs_dict

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    def prepare_config_and_inputs_for_question_answering(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # Replace sep_token_id by some random id
        input_ids[input_ids == config.sep_token_id] = torch.randint(0, config.vocab_size, (1,)).item()
        # Make sure there are exactly three sep_token_id
        input_ids[:, -3:] = config.sep_token_id
        input_mask = torch.ones_like(input_ids)

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

Iz Beltagy's avatar
Iz Beltagy committed
272
273
274
275
276
277
278

@require_torch
class LongformerModelTest(ModelTesterMixin, unittest.TestCase):
    test_pruning = False  # pruning is not supported
    test_headmasking = False  # head masking is not supported
    test_torchscript = False

279
280
281
282
    all_model_classes = (
        (
            LongformerModel,
            LongformerForMaskedLM,
283
284
285
286
            LongformerForSequenceClassification,
            LongformerForQuestionAnswering,
            LongformerForTokenClassification,
            LongformerForMultipleChoice,
287
288
289
290
        )
        if is_torch_available()
        else ()
    )
Iz Beltagy's avatar
Iz Beltagy committed
291
292
293
294
295
296
297
298

    def setUp(self):
        self.model_tester = LongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

299
    def test_model(self):
Iz Beltagy's avatar
Iz Beltagy committed
300
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
301
        self.model_tester.create_and_check_model(*config_and_inputs)
Iz Beltagy's avatar
Iz Beltagy committed
302

303
    def test_model_attention_mask_determinism(self):
304
305
306
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)

307
    def test_model_global_attention_mask(self):
308
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
309
        self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs)
310

311
    def test_for_masked_lm(self):
Iz Beltagy's avatar
Iz Beltagy committed
312
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
313
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
Iz Beltagy's avatar
Iz Beltagy committed
314

315
    def test_for_question_answering(self):
316
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
317
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
318

319
320
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
321
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
322

323
324
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
325
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
326

327
328
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
329
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
330

331
332
333
334
    def test_retain_grad_hidden_states_attentions(self):
        # longformer cannot keep gradients in attentions or hidden states
        return

Iz Beltagy's avatar
Iz Beltagy committed
335

Patrick von Platen's avatar
Patrick von Platen committed
336
@require_torch
337
338
@require_sentencepiece
@require_tokenizers
Iz Beltagy's avatar
Iz Beltagy committed
339
class LongformerModelIntegrationTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    def _get_hidden_states(self):
        return torch.tensor(
            [
                [
                    [
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=torch.float32,
            device=torch_device,
        )

    def test_diagonalize(self):
        hidden_states = self._get_hidden_states()
        hidden_states = hidden_states.reshape((1, 8, 4))  # set seq length = 8, hidden dim = 4
        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
        window_overlap_size = chunked_hidden_states.shape[2]
        self.assertTrue(window_overlap_size == 4)

        padded_hidden_states = LongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)

        self.assertTrue(padded_hidden_states.shape[-1] == chunked_hidden_states.shape[-1] + window_overlap_size - 1)

        # first row => [0.4983,  2.6918, -0.0071,  1.0492, 0.0000,  0.0000,  0.0000]
        self.assertTrue(torch.allclose(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], atol=1e-3))
        self.assertTrue(
            torch.allclose(
                padded_hidden_states[0, 0, 0, 4:],
                torch.zeros((3,), device=torch_device, dtype=torch.float32),
                atol=1e-3,
            )
        )
        # last row => [0.0000,  0.0000,  0.0000, 2.0514, -1.1600,  0.5372,  0.2629]
        self.assertTrue(torch.allclose(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], atol=1e-3))
        self.assertTrue(
            torch.allclose(
                padded_hidden_states[0, 0, -1, :3],
                torch.zeros((3,), device=torch_device, dtype=torch.float32),
                atol=1e-3,
            )
        )

    def test_pad_and_transpose_last_two_dims(self):
        hidden_states = self._get_hidden_states()
        self.assertTrue(hidden_states.shape, (1, 8, 4))
        padding = (0, 0, 0, 1)

        padded_hidden_states = LongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, padding)
        self.assertTrue(padded_hidden_states.shape, (1, 8, 5))

        expected_added_dim = torch.zeros((5,), device=torch_device, dtype=torch.float32)
        self.assertTrue(torch.allclose(expected_added_dim, padded_hidden_states[0, -1, :], atol=1e-6))
        self.assertTrue(torch.allclose(hidden_states[0, -1, :], padded_hidden_states.view(1, -1)[0, 24:32], atol=1e-6))

    def test_chunk(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))

        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        # expected slices across chunk and seq length dim
        expected_slice_along_seq_length = torch.tensor(
            [0.4983, -0.7584, -1.6944], device=torch_device, dtype=torch.float32
        )
        expected_slice_along_chunk = torch.tensor(
            [0.4983, -1.8348, -0.7584, 2.0514], device=torch_device, dtype=torch.float32
        )

        self.assertTrue(torch.allclose(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, atol=1e-3))
        self.assertTrue(torch.allclose(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, atol=1e-3))
        self.assertTrue(chunked_hidden_states.shape, (1, 3, 4, 4))

    def test_mask_invalid_locations(self):
        hidden_states = self._get_hidden_states()

        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        hid_states_1 = chunked_hidden_states.clone()
        LongformerSelfAttention._mask_invalid_locations(hid_states_1, 1)
        self.assertTrue(torch.isinf(hid_states_1).sum().item() == 8)

        hid_states_2 = chunked_hidden_states.clone()
        LongformerSelfAttention._mask_invalid_locations(hid_states_2, 2)
        self.assertTrue(torch.isinf(hid_states_2).sum().item() == 24)

        hid_states_3 = chunked_hidden_states.clone()[:, :, :, :3]
        LongformerSelfAttention._mask_invalid_locations(hid_states_3, 2)
        self.assertTrue(torch.isinf(hid_states_3).sum().item() == 24)

        hid_states_4 = chunked_hidden_states.clone()[:, :, 2:, :]
        LongformerSelfAttention._mask_invalid_locations(hid_states_4, 2)
        self.assertTrue(torch.isinf(hid_states_4).sum().item() == 12)

    def test_layer_local_attn(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = self._get_hidden_states()
        batch_size, seq_length, hidden_size = hidden_states.size()
484
485
486
487
488
489
490
491
492
493
494
495
496
497
        attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
        attention_mask[:, -2:] = -10000

        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

        output_hidden_states, _ = layer(
            hidden_states,
            attention_mask=attention_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
        )
Patrick von Platen's avatar
Patrick von Platen committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

        self.assertTrue(output_hidden_states.shape, (1, 4, 8))
        self.assertTrue(
            torch.allclose(
                output_hidden_states[0, 1],
                torch.tensor(
                    [0.0019, 0.0122, -0.0171, -0.0256, -0.0300, 0.0173, -0.0115, 0.0048],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

    def test_layer_global_attn(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
        batch_size, seq_length, hidden_size = hidden_states.size()
518
        attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
519
520

        # create attn mask
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        attention_mask[0, -2:] = 10000.0
        attention_mask[0, -1:] = -10000.0
        attention_mask[1, 1:] = 10000.0

        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

        output_hidden_states, _, _ = layer(
            hidden_states,
            attention_mask=attention_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
        )
Patrick von Platen's avatar
Patrick von Platen committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

        self.assertTrue(output_hidden_states.shape, (2, 4, 8))

        self.assertTrue(
            torch.allclose(
                output_hidden_states[0, 2],
                torch.tensor(
                    [-0.0651, -0.0393, 0.0309, -0.0342, -0.0066, -0.0155, -0.0209, -0.0494],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                output_hidden_states[1, -2],
                torch.tensor(
                    [-0.0405, -0.0384, 0.0396, -0.0374, -0.0341, 0.0136, 0.0014, -0.0571],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    def test_layer_attn_probs(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
        batch_size, seq_length, hidden_size = hidden_states.size()
        attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)

        # create attn mask
        attention_mask[0, -2:] = 10000.0
        attention_mask[0, -1:] = -10000.0
        attention_mask[1, 1:] = 10000.0

        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

        output_hidden_states, local_attentions, global_attentions = layer(
            hidden_states,
            attention_mask=attention_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
        )

        self.assertEqual(local_attentions.shape, (2, 4, 2, 8))
        self.assertEqual(global_attentions.shape, (2, 2, 3, 4))

        # All tokens with global attention have weight 0 in local attentions.
        self.assertTrue(torch.all(local_attentions[0, 2:4, :, :] == 0))
        self.assertTrue(torch.all(local_attentions[1, 1:4, :, :] == 0))

        # The weight of all tokens with local attention must sum to 1.
        self.assertTrue(torch.all(torch.abs(global_attentions[0, :, :2, :].sum(dim=-1) - 1) < 1e-6))
        self.assertTrue(torch.all(torch.abs(global_attentions[1, :, :1, :].sum(dim=-1) - 1) < 1e-6))

        self.assertTrue(
            torch.allclose(
                local_attentions[0, 0, 0, :],
                torch.tensor(
                    [0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                local_attentions[1, 0, 0, :],
                torch.tensor(
                    [0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        # All the global attention weights must sum to 1.
        self.assertTrue(torch.all(torch.abs(global_attentions.sum(dim=-1) - 1) < 1e-6))

        self.assertTrue(
            torch.allclose(
                global_attentions[0, 0, 1, :],
                torch.tensor(
                    [0.2500, 0.2500, 0.2500, 0.2500],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                global_attentions[1, 0, 0, :],
                torch.tensor(
                    [0.2497, 0.2500, 0.2499, 0.2504],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

Iz Beltagy's avatar
Iz Beltagy committed
650
651
    @slow
    def test_inference_no_head(self):
652
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
653
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
654

655
656
657
        # 'Hello world!'
        input_ids = torch.tensor([[0, 20920, 232, 328, 1437, 2]], dtype=torch.long, device=torch_device)
        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
658

659
660
661
662
663
664
665
666
667
668
669
670
        output = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]

        expected_output_slice = torch.tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], device=torch_device)
        self.assertTrue(torch.allclose(output[0, 0, -5:], expected_output_slice, atol=1e-4))
        self.assertTrue(torch.allclose(output_without_mask[0, 0, -5:], expected_output_slice, atol=1e-4))

    @slow
    def test_inference_no_head_long(self):
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
        model.to(torch_device)

Iz Beltagy's avatar
Iz Beltagy committed
671
        # 'Hello world! ' repeated 1000 times
672
673
674
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Iz Beltagy's avatar
Iz Beltagy committed
675
676

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
677
678
        global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device)
        global_attention_mask[:, [1, 4, 21]] = 1  # Set global attention on a few random positions
Iz Beltagy's avatar
Iz Beltagy committed
679

680
        output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]
Iz Beltagy's avatar
Iz Beltagy committed
681

682
683
        expected_output_sum = torch.tensor(74585.8594, device=torch_device)
        expected_output_mean = torch.tensor(0.0243, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
684
685
686
687
        self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
        self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))

    @slow
688
    def test_inference_masked_lm_long(self):
689
        model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
690
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
691
692

        # 'Hello world! ' repeated 1000 times
693
694
695
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Patrick von Platen's avatar
Patrick von Platen committed
696
        input_ids = input_ids.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
697

698
        loss, prediction_scores = model(input_ids, labels=input_ids).to_tuple()
Iz Beltagy's avatar
Iz Beltagy committed
699

700
701
702
        expected_loss = torch.tensor(0.0074, device=torch_device)
        expected_prediction_scores_sum = torch.tensor(-6.1048e08, device=torch_device)
        expected_prediction_scores_mean = torch.tensor(-3.0348, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
703
704
705
706

        self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))