test_benchmark_tf.py 8.84 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
17
18
19
20
import os
import tempfile
import unittest
from pathlib import Path

from transformers import AutoConfig, is_tf_available
21
from transformers.testing_utils import require_tf
Patrick von Platen's avatar
Patrick von Platen committed
22
23
24
25


if is_tf_available():
    import tensorflow as tf
26

27
    from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
31
32
33
34
35
36
37
38
39


@require_tf
class TFBenchmarkTest(unittest.TestCase):
    def check_results_dict_not_empty(self, results):
        for model_result in results.values():
            for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]):
                result = model_result["result"][batch_size][sequence_length]
                self.assertIsNotNone(result)

    def test_inference_no_configs_eager(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
40
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
41
42
            models=[MODEL_ID],
            training=False,
43
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
            sequence_lengths=[8],
            batch_sizes=[1],
            eager_mode=True,
47
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
48
        )
49
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

54
55
    def test_inference_no_configs_only_pretrain(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english"
56
        benchmark_args = TensorFlowBenchmarkArguments(
57
58
            models=[MODEL_ID],
            training=False,
59
            inference=True,
60
61
            sequence_lengths=[8],
            batch_sizes=[1],
62
            multi_process=False,
63
64
            only_pretrain_model=True,
        )
65
        benchmark = TensorFlowBenchmark(benchmark_args)
66
67
68
69
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

Patrick von Platen's avatar
Patrick von Platen committed
70
71
    def test_inference_no_configs_graph(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
72
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
73
74
            models=[MODEL_ID],
            training=False,
75
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
76
77
            sequence_lengths=[8],
            batch_sizes=[1],
78
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
79
        )
80
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
84
85
86
87
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_with_configs_eager(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
88
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
89
90
            models=[MODEL_ID],
            training=False,
91
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
            sequence_lengths=[8],
            batch_sizes=[1],
            eager_mode=True,
95
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
96
        )
97
        benchmark = TensorFlowBenchmark(benchmark_args, [config])
Patrick von Platen's avatar
Patrick von Platen committed
98
99
100
101
102
103
104
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_with_configs_graph(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
105
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
106
107
            models=[MODEL_ID],
            training=False,
108
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
109
110
            sequence_lengths=[8],
            batch_sizes=[1],
111
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
112
        )
113
        benchmark = TensorFlowBenchmark(benchmark_args, [config])
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
117
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

118
119
120
121
122
    def test_train_no_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = TensorFlowBenchmarkArguments(
            models=[MODEL_ID],
            training=True,
123
            inference=False,
124
125
            sequence_lengths=[8],
            batch_sizes=[1],
126
            multi_process=False,
127
128
129
130
131
132
133
134
135
136
137
138
        )
        benchmark = TensorFlowBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_train_with_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
        benchmark_args = TensorFlowBenchmarkArguments(
            models=[MODEL_ID],
            training=True,
139
            inference=False,
140
141
            sequence_lengths=[8],
            batch_sizes=[1],
142
            multi_process=False,
143
144
145
146
147
148
        )
        benchmark = TensorFlowBenchmark(benchmark_args, [config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

Patrick von Platen's avatar
Patrick von Platen committed
149
150
151
    def test_inference_encoder_decoder_with_configs(self):
        MODEL_ID = "patrickvonplaten/t5-tiny-random"
        config = AutoConfig.from_pretrained(MODEL_ID)
152
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
153
154
            models=[MODEL_ID],
            training=False,
155
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
156
157
            sequence_lengths=[8],
            batch_sizes=[1],
158
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
159
        )
160
        benchmark = TensorFlowBenchmark(benchmark_args, configs=[config])
Patrick von Platen's avatar
Patrick von Platen committed
161
162
163
164
165
166
167
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0, "Cannot do xla on CPU.")
    def test_inference_no_configs_xla(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
168
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
169
170
            models=[MODEL_ID],
            training=False,
171
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
172
173
174
            sequence_lengths=[8],
            batch_sizes=[1],
            use_xla=True,
175
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
176
        )
177
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
178
179
180
181
182
183
184
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_save_csv_files(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        with tempfile.TemporaryDirectory() as tmp_dir:
185
            benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
186
                models=[MODEL_ID],
187
                inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
188
189
190
191
192
193
                save_to_csv=True,
                sequence_lengths=[8],
                batch_sizes=[1],
                inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"),
                inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"),
                env_info_csv_file=os.path.join(tmp_dir, "env.csv"),
194
                multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
195
            )
196
            benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            benchmark.run()
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists())

    def test_trace_memory(self):
        MODEL_ID = "sshleifer/tiny-gpt2"

        def _check_summary_is_not_empty(summary):
            self.assertTrue(hasattr(summary, "sequential"))
            self.assertTrue(hasattr(summary, "cumulative"))
            self.assertTrue(hasattr(summary, "current"))
            self.assertTrue(hasattr(summary, "total"))

        with tempfile.TemporaryDirectory() as tmp_dir:
212
            benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
213
                models=[MODEL_ID],
214
                inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217
218
219
220
                sequence_lengths=[8],
                batch_sizes=[1],
                log_filename=os.path.join(tmp_dir, "log.txt"),
                log_print=True,
                trace_memory_line_by_line=True,
                eager_mode=True,
221
                multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
222
            )
223
            benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
224
225
226
            result = benchmark.run()
            _check_summary_is_not_empty(result.inference_summary)
            self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())