marian.rst 9.05 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
.. 
    Copyright 2020 The HuggingFace Team. All rights reserved.

    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
    the License. You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
    an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
    specific language governing permissions and limitations under the License.

13
MarianMT
Sylvain Gugger's avatar
Sylvain Gugger committed
14
-----------------------------------------------------------------------------------------------------------------------
15
16
17

**Bugs:** If you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=sshleifer&labels=&template=bug-report.md&title>`__
18
and assign @patrickvonplaten.
19

20
Translations should be similar, but not identical to output in the test set linked to in each model card.
21
22

Implementation Notes
Sylvain Gugger's avatar
Sylvain Gugger committed
23
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24
25

- Each model is about 298 MB on disk, there are more than 1,000 models.
26
- The list of supported language pairs can be found `here <https://huggingface.co/Helsinki-NLP>`__.
Sylvain Gugger's avatar
Sylvain Gugger committed
27
28
29
- Models were originally trained by `Jrg Tiedemann
  <https://researchportal.helsinki.fi/en/persons/j%C3%B6rg-tiedemann>`__ using the `Marian
  <https://marian-nmt.github.io/>`__ C++ library, which supports fast training and translation.
30
31
- All models are transformer encoder-decoders with 6 layers in each component. Each model's performance is documented
  in a model card.
Sylvain Gugger's avatar
Sylvain Gugger committed
32
- The 80 opus models that require BPE preprocessing are not supported.
33
- The modeling code is the same as :class:`~transformers.BartForConditionalGeneration` with a few minor modifications:
Sylvain Gugger's avatar
Sylvain Gugger committed
34

35
36
37
38
39
40
    - static (sinusoid) positional embeddings (:obj:`MarianConfig.static_position_embeddings=True`)
    - a new final_logits_bias (:obj:`MarianConfig.add_bias_logits=True`)
    - no layernorm_embedding (:obj:`MarianConfig.normalize_embedding=False`)
    - the model starts generating with :obj:`pad_token_id` (which has 0 as a token_embedding) as the prefix (Bart uses
      :obj:`<s/>`),
- Code to bulk convert models can be found in ``convert_marian_to_pytorch.py``.
41

42
Naming
Sylvain Gugger's avatar
Sylvain Gugger committed
43
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
44

Sylvain Gugger's avatar
Sylvain Gugger committed
45
- All model names use the following format: :obj:`Helsinki-NLP/opus-mt-{src}-{tgt}`
46
- The language codes used to name models are inconsistent. Two digit codes can usually be found `here
Sylvain Gugger's avatar
Sylvain Gugger committed
47
48
  <https://developers.google.com/admin-sdk/directory/v1/languages>`__, three digit codes require googling "language
  code {code}".
49
- Codes formatted like :obj:`es_AR` are usually :obj:`code_{region}`. That one is Spanish from Argentina.
50
51
- The models were converted in two stages. The first 1000 models use ISO-639-2 codes to identify languages, the second
  group use a combination of ISO-639-5 codes and ISO-639-2 codes.
52
53


54
Examples
Sylvain Gugger's avatar
Sylvain Gugger committed
55
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56

57
58
59
60
61
62
63
64
65
66
67
- Since Marian models are smaller than many other translation models available in the library, they can be useful for
  fine-tuning experiments and integration tests.
- `Fine-tune on TPU
  <https://github.com/huggingface/transformers/blob/master/examples/seq2seq/builtin_trainer/train_distil_marian_enro_tpu.sh>`__
- `Fine-tune on GPU
  <https://github.com/huggingface/transformers/blob/master/examples/seq2seq/builtin_trainer/train_distil_marian_enro.sh>`__
- `Fine-tune on GPU with pytorch-lightning
  <https://github.com/huggingface/transformers/blob/master/examples/seq2seq/distil_marian_no_teacher.sh>`__

Multilingual Models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
68

69
70
71
72
73
74
75
- All model names use the following format: :obj:`Helsinki-NLP/opus-mt-{src}-{tgt}`:
- If a model can output multiple languages, and you should specify a language code by prepending the desired output
  language to the :obj:`src_text`.
- You can see a models's supported language codes in its model card, under target constituents, like in `opus-mt-en-roa
  <https://huggingface.co/Helsinki-NLP/opus-mt-en-roa>`__.
- Note that if a model is only multilingual on the source side, like :obj:`Helsinki-NLP/opus-mt-roa-en`, no language
  codes are required.
76

77
78
New multi-lingual models from the `Tatoeba-Challenge repo <https://github.com/Helsinki-NLP/Tatoeba-Challenge>`__
require 3 character language codes:
79
80
81
82
83

.. code-block:: python

    from transformers import MarianMTModel, MarianTokenizer
    src_text = [
84
85
86
        '>>fra<< this is a sentence in english that we want to translate to french',
        '>>por<< This should go to portuguese',
        '>>esp<< And this to Spanish'
87
88
    ]

89
    model_name = 'Helsinki-NLP/opus-mt-en-roa'
90
91
92
    tokenizer = MarianTokenizer.from_pretrained(model_name)
    print(tokenizer.supported_language_codes)
    model = MarianMTModel.from_pretrained(model_name)
93
    translated = model.generate(**tokenizer.prepare_seq2seq_batch(src_text, return_tensors="pt"))
94
95
96
97
98
    tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
    # ["c'est une phrase en anglais que nous voulons traduire en fran莽ais",
    # 'Isto deve ir para o portugu锚s.',
    # 'Y esto al espa帽ol']

99
100


101

102
103
104
105
106
107
108
109
110
111
112
113
Code to see available pretrained models:

.. code-block:: python

    from transformers.hf_api import HfApi
    model_list = HfApi().model_list()
    org = "Helsinki-NLP"
    model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
    suffix = [x.split('/')[1] for x in model_ids]
    old_style_multi_models = [f'{org}/{s}' for s in suffix if s != s.lower()]


114

115
116
Old Style Multi-Lingual Models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
117

118
119
These are the old style multi-lingual models ported from the OPUS-MT-Train repo: and the members of each language
group:
120
121
122

.. code-block:: python

123
124
125
126
127
128
129
130
131
132
133
134
    ['Helsinki-NLP/opus-mt-NORTH_EU-NORTH_EU',
     'Helsinki-NLP/opus-mt-ROMANCE-en',
     'Helsinki-NLP/opus-mt-SCANDINAVIA-SCANDINAVIA',
     'Helsinki-NLP/opus-mt-de-ZH',
     'Helsinki-NLP/opus-mt-en-CELTIC',
     'Helsinki-NLP/opus-mt-en-ROMANCE',
     'Helsinki-NLP/opus-mt-es-NORWAY',
     'Helsinki-NLP/opus-mt-fi-NORWAY',
     'Helsinki-NLP/opus-mt-fi-ZH',
     'Helsinki-NLP/opus-mt-fi_nb_no_nn_ru_sv_en-SAMI',
     'Helsinki-NLP/opus-mt-sv-NORWAY',
     'Helsinki-NLP/opus-mt-sv-ZH']
135
136
137
138
139
140
141
142
143
144
145
146
    GROUP_MEMBERS = {
     'ZH': ['cmn', 'cn', 'yue', 'ze_zh', 'zh_cn', 'zh_CN', 'zh_HK', 'zh_tw', 'zh_TW', 'zh_yue', 'zhs', 'zht', 'zh'],
     'ROMANCE': ['fr', 'fr_BE', 'fr_CA', 'fr_FR', 'wa', 'frp', 'oc', 'ca', 'rm', 'lld', 'fur', 'lij', 'lmo', 'es', 'es_AR', 'es_CL', 'es_CO', 'es_CR', 'es_DO', 'es_EC', 'es_ES', 'es_GT', 'es_HN', 'es_MX', 'es_NI', 'es_PA', 'es_PE', 'es_PR', 'es_SV', 'es_UY', 'es_VE', 'pt', 'pt_br', 'pt_BR', 'pt_PT', 'gl', 'lad', 'an', 'mwl', 'it', 'it_IT', 'co', 'nap', 'scn', 'vec', 'sc', 'ro', 'la'],
     'NORTH_EU': ['de', 'nl', 'fy', 'af', 'da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
     'SCANDINAVIA': ['da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
     'SAMI': ['se', 'sma', 'smj', 'smn', 'sms'],
     'NORWAY': ['nb_NO', 'nb', 'nn_NO', 'nn', 'nog', 'no_nb', 'no'],
     'CELTIC': ['ga', 'cy', 'br', 'gd', 'kw', 'gv']
    }



147
148
149
150
151
152
153

Example of translating english to many romance languages, using old-style 2 character language codes


.. code-block::python

    from transformers import MarianMTModel, MarianTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155
156
157
158
159
160
161
162
    src_text = [
        '>>fr<< this is a sentence in english that we want to translate to french',
        '>>pt<< This should go to portuguese',
        '>>es<< And this to Spanish'
    ]

    model_name = 'Helsinki-NLP/opus-mt-en-ROMANCE'
    tokenizer = MarianTokenizer.from_pretrained(model_name)
    print(tokenizer.supported_language_codes)
163

Sylvain Gugger's avatar
Sylvain Gugger committed
164
    model = MarianMTModel.from_pretrained(model_name)
165
    translated = model.generate(**tokenizer.prepare_seq2seq_batch(src_text, return_tensors="pt"))
Sylvain Gugger's avatar
Sylvain Gugger committed
166
    tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
167
168
    # ["c'est une phrase en anglais que nous voulons traduire en fran莽ais", 'Isto deve ir para o portugu锚s.',  'Y esto al espa帽ol']

169

170

Sylvain Gugger's avatar
Sylvain Gugger committed
171
MarianConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
172
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sylvain Gugger's avatar
Sylvain Gugger committed
173

Sylvain Gugger's avatar
Sylvain Gugger committed
174
175
176
177
178
.. autoclass:: transformers.MarianConfig
    :members:


MarianTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
179
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sylvain Gugger's avatar
Sylvain Gugger committed
180
181

.. autoclass:: transformers.MarianTokenizer
182
    :members: prepare_seq2seq_batch
Sylvain Gugger's avatar
Sylvain Gugger committed
183
184


185
186
MarianMTModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
187

188
.. autoclass:: transformers.MarianMTModel
189
190
191
192
193
194


TFMarianMTModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFMarianMTModel