deberta.rst 3.72 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
.. 
    Copyright 2020 The HuggingFace Team. All rights reserved.

    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
    the License. You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
    an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
    specific language governing permissions and limitations under the License.

Pengcheng He's avatar
Pengcheng He committed
13
DeBERTa
Sylvain Gugger's avatar
Sylvain Gugger committed
14
-----------------------------------------------------------------------------------------------------------------------
Pengcheng He's avatar
Pengcheng He committed
15
16

Overview
Sylvain Gugger's avatar
Sylvain Gugger committed
17
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pengcheng He's avatar
Pengcheng He committed
18

Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
21
The DeBERTa model was proposed in `DeBERTa: Decoding-enhanced BERT with Disentangled Attention
<https://arxiv.org/abs/2006.03654>`__ by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
Pengcheng He's avatar
Pengcheng He committed
22

Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
RoBERTa.
Pengcheng He's avatar
Pengcheng He committed
25
26
27

The abstract from the paper is the following:

Sylvain Gugger's avatar
Sylvain Gugger committed
28
29
30
31
32
33
34
*Recent progress in pre-trained neural language models has significantly improved the performance of many natural
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
disentangled attention mechanism, where each word is represented using two vectors that encode its content and
position, respectively, and the attention weights among words are computed using disentangled matrices on their
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
35
36
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of
the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
Sylvain Gugger's avatar
Sylvain Gugger committed
37
38
(90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and
pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.*
Pengcheng He's avatar
Pengcheng He committed
39
40
41
42
43
44


The original code can be found `here <https://github.com/microsoft/DeBERTa>`__.


DebertaConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
45
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pengcheng He's avatar
Pengcheng He committed
46
47
48
49
50
51

.. autoclass:: transformers.DebertaConfig
    :members:


DebertaTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
52
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pengcheng He's avatar
Pengcheng He committed
53
54
55
56
57
58
59

.. autoclass:: transformers.DebertaTokenizer
    :members: build_inputs_with_special_tokens, get_special_tokens_mask,
        create_token_type_ids_from_sequences, save_vocabulary


DebertaModel
Sylvain Gugger's avatar
Sylvain Gugger committed
60
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pengcheng He's avatar
Pengcheng He committed
61
62
63
64
65
66

.. autoclass:: transformers.DebertaModel
    :members:


DebertaPreTrainedModel
Sylvain Gugger's avatar
Sylvain Gugger committed
67
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pengcheng He's avatar
Pengcheng He committed
68
69
70
71
72
73

.. autoclass:: transformers.DebertaPreTrainedModel
    :members:


DebertaForSequenceClassification
Sylvain Gugger's avatar
Sylvain Gugger committed
74
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pengcheng He's avatar
Pengcheng He committed
75
76
77

.. autoclass:: transformers.DebertaForSequenceClassification
    :members: