"tests/models/jetmoe/test_modeling_jetmoe.py" did not exist on "5334796d204177b5ccfddc3471ee1ca4cec217a6"
predict_i2v.py 10.4 KB
Newer Older
chenpangpang's avatar
chenpangpang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os

import torch
from PIL import Image
from diffusers import (EulerDiscreteScheduler, EulerAncestralDiscreteScheduler,
                       DPMSolverMultistepScheduler, PNDMScheduler, DDIMScheduler)
from omegaconf import OmegaConf
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from safetensors.torch import load_file as load_safetensors
from huggingface_hub import snapshot_download

from ruyi.data.bucket_sampler import ASPECT_RATIO_512, get_closest_ratio
from ruyi.models.autoencoder_magvit import AutoencoderKLMagvit
from ruyi.models.transformer3d import HunyuanTransformer3DModel
from ruyi.pipeline.pipeline_ruyi_inpaint import RuyiInpaintPipeline
from ruyi.utils.lora_utils import merge_lora, unmerge_lora
from ruyi.utils.utils import get_image_to_video_latent, save_videos_grid

# Input and output
start_image_path    = "assets/girl_01.jpg"
end_image_path      = "assets/girl_02.jpg" # Can be None for start-image-to-video
output_video_path   = "outputs/example_01.mp4"

# Video settings
video_length        = 120       # The max video length is 120 frames (24 frames per second)
base_resolution     = 512       # # The pixels in the generated video are approximately 512 x 512. Values in the range of [384, 896] typically produce good video quality.
video_size          = None      # Override base_resolution. Format: [height, width], e.g., [384, 672]
# Control settings
aspect_ratio        = "16:9"    # Choose in ["16:9", "9:16"], note that this is only the hint
motion              = "auto"    # Motion control, choose in ["1", "2", "3", "4", "auto"]
camera_direction    = "auto"    # Camera control, choose in ["static", "left", "right", "up", "down", "auto"]
# Sampler settings
steps               = 25
cfg                 = 7.0
scheduler_name      = "DDIM"    # Choose in ["Euler", "Euler A", "DPM++", "PNDM","DDIM"]

# GPU memory settings
low_gpu_memory_mode = False     # Low gpu memory mode
gpu_offload_steps   = 5         # Choose in [0, 10, 7, 5, 1], the latter number requires less GPU memory but longer time

# Random seed
seed                = 42        # The Answer to the Ultimate Question of Life, The Universe, and Everything

# Model settings
config_path         = "config/default.yaml"
model_name          = "Ruyi-Mini-7B"
model_type          = "Inpaint"
model_path          = f"models/{model_name}"    # (Down)load mode in this path
auto_download       = True                      # Automatically download the model if the pipeline creation fails
auto_update         = True                      # If auto_download is enabled, check for updates and update the model if necessary

# LoRA settings
lora_path           = None
lora_weight         = 1.0

# Other settings
weight_dtype = torch.bfloat16
device = torch.device("cuda")


def get_control_embeddings(pipeline, aspect_ratio, motion, camera_direction):
    # Default keys
    p_default_key = "p.default"
    n_default_key = "n.default"

    # Load embeddings
    if motion == "auto":
        motion = "0"
    p_key = f"p.{aspect_ratio.replace(':', 'x')}movie{motion}{camera_direction}"
    embeddings = pipeline.embeddings

    # Get embeddings
    positive_embeds = embeddings.get(f"{p_key}.emb1", embeddings[f"{p_default_key}.emb1"])
    positive_attention_mask = embeddings.get(f"{p_key}.mask1", embeddings[f"{p_default_key}.mask1"])
    positive_embeds_2 = embeddings.get(f"{p_key}.emb2", embeddings[f"{p_default_key}.emb2"])
    positive_attention_mask_2 = embeddings.get(f"{p_key}.mask2", embeddings[f"{p_default_key}.mask2"])

    negative_embeds = embeddings[f"{n_default_key}.emb1"]
    negative_attention_mask = embeddings[f"{n_default_key}.mask1"]
    negative_embeds_2 = embeddings[f"{n_default_key}.emb2"]
    negative_attention_mask_2 = embeddings[f"{n_default_key}.mask2"]

    return {
        "positive_embeds": positive_embeds,
        "positive_attention_mask": positive_attention_mask,
        "positive_embeds_2": positive_embeds_2,
        "positive_attention_mask_2": positive_attention_mask_2,

        "negative_embeds": negative_embeds,
        "negative_attention_mask": negative_attention_mask,
        "negative_embeds_2": negative_embeds_2,
        "negative_attention_mask_2": negative_attention_mask_2,
    }


def try_setup_pipeline(model_path, weight_dtype, config):
    try:
        # Get Vae
        vae = AutoencoderKLMagvit.from_pretrained(
            model_path, 
            subfolder="vae"
        ).to(weight_dtype)
        print("Vae loaded ...")

        # Get Transformer
        transformer_additional_kwargs = OmegaConf.to_container(config['transformer_additional_kwargs'])
        transformer = HunyuanTransformer3DModel.from_pretrained_2d(
            model_path, 
            subfolder="transformer",
            transformer_additional_kwargs=transformer_additional_kwargs
        ).to(weight_dtype)
        print("Transformer loaded ...")

        # Load Clip
        clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            model_path, subfolder="image_encoder"
        ).to(weight_dtype)
        clip_image_processor = CLIPImageProcessor.from_pretrained(
            model_path, subfolder="image_encoder"
        )

        # Load sampler and create pipeline
        Choosen_Scheduler = DDIMScheduler
        scheduler = Choosen_Scheduler.from_pretrained(
            model_path, 
            subfolder="scheduler"
        )
        pipeline = RuyiInpaintPipeline.from_pretrained(
            model_path,
            vae=vae,
            transformer=transformer,
            scheduler=scheduler,
            torch_dtype=weight_dtype,
            clip_image_encoder=clip_image_encoder,
            clip_image_processor=clip_image_processor,
        )

        # Load embeddings
        embeddings = load_safetensors(os.path.join(model_path, "embeddings.safetensors"))
        pipeline.embeddings = embeddings
        print("Pipeline loaded ...")

        return pipeline
    except Exception as e:
        print("[Ruyi] Setup pipeline failed:", e)
        return None


# Load config
config = OmegaConf.load(config_path)

# Load images
start_img = [Image.open(start_image_path).convert("RGB")]
end_img   = [Image.open(end_image_path).convert("RGB")] if end_image_path is not None else None

# Check for update
repo_id = f"IamCreateAI/{model_name}"
if auto_download and auto_update:
    print(f"Checking for {model_name} updates ...")

    # Download the model
    snapshot_download(repo_id=repo_id, local_dir=model_path)

# Init model
pipeline = try_setup_pipeline(model_path, weight_dtype, config)
if pipeline is None and auto_download:
    print(f"Downloading {model_name} ...")

    # Download the model
    snapshot_download(repo_id=repo_id, local_dir=model_path)

    pipeline = try_setup_pipeline(model_path, weight_dtype, config)

if pipeline is None:
    message = (f"[Load Model Failed] "
               f"Please download Ruyi model from huggingface repo '{repo_id}', "
               f"And put it into '{model_path}'.")
    if not auto_download:
        message += "\nOr just set auto_download to 'True'."
    raise FileNotFoundError(message)

# Setup GPU memory mode
if low_gpu_memory_mode:
    pipeline.enable_sequential_cpu_offload()
else:
    pipeline.enable_model_cpu_offload()

# Prepare LoRA config
loras = {
    'models': [lora_path] if lora_path is not None else [],
    'weights': [lora_weight] if lora_path is not None else [],
}

# Count most suitable height and width
if video_size is None:
    aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
    original_width, original_height = start_img[0].size if type(start_img) is list else Image.open(start_img).size
    closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
    height, width = [int(x / 16) * 16 for x in closest_size]
else:
    height, width = video_size

# Set hidden states offload steps
pipeline.transformer.hidden_cache_size = gpu_offload_steps

# Load Sampler
if scheduler_name == "DPM++":
    noise_scheduler = DPMSolverMultistepScheduler.from_pretrained(model_path, subfolder='scheduler')
elif scheduler_name == "Euler":
    noise_scheduler = EulerDiscreteScheduler.from_pretrained(model_path, subfolder='scheduler')
elif scheduler_name == "Euler A":
    noise_scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_path, subfolder='scheduler')
elif scheduler_name == "PNDM":
    noise_scheduler = PNDMScheduler.from_pretrained(model_path, subfolder='scheduler')
elif scheduler_name == "DDIM":
    noise_scheduler = DDIMScheduler.from_pretrained(model_path, subfolder='scheduler')
pipeline.scheduler = noise_scheduler

# Set random seed
generator= torch.Generator(device).manual_seed(seed)

# Load control embeddings
embeddings = get_control_embeddings(pipeline, aspect_ratio, motion, camera_direction)

with torch.no_grad():
    video_length = int(video_length // pipeline.vae.mini_batch_encoder * pipeline.vae.mini_batch_encoder) if video_length != 1 else 1
    input_video, input_video_mask, clip_image = get_image_to_video_latent(start_img, end_img, video_length=video_length, sample_size=(height, width))

    for _lora_path, _lora_weight in zip(loras.get("models", []), loras.get("weights", [])):
        pipeline = merge_lora(pipeline, _lora_path, _lora_weight)
    
    sample = pipeline(
        prompt_embeds = embeddings["positive_embeds"],
        prompt_attention_mask = embeddings["positive_attention_mask"],
        prompt_embeds_2 = embeddings["positive_embeds_2"],
        prompt_attention_mask_2 = embeddings["positive_attention_mask_2"],

        negative_prompt_embeds = embeddings["negative_embeds"],
        negative_prompt_attention_mask = embeddings["negative_attention_mask"],
        negative_prompt_embeds_2 = embeddings["negative_embeds_2"],
        negative_prompt_attention_mask_2 = embeddings["negative_attention_mask_2"],

        video_length = video_length,
        height      = height,
        width       = width,
        generator   = generator,
        guidance_scale = cfg,
        num_inference_steps = steps,

        video        = input_video,
        mask_video   = input_video_mask,
        clip_image   = clip_image, 
    ).videos

    for _lora_path, _lora_weight in zip(loras.get("models", []), loras.get("weights", [])):
        pipeline = unmerge_lora(pipeline, _lora_path, _lora_weight)

# Save the video
output_folder = os.path.dirname(output_video_path)
if output_folder != '':
    os.makedirs(output_folder, exist_ok=True)
save_videos_grid(sample, output_video_path, fps=24)