Commit 153694fa authored by Yoach Lacombe's avatar Yoach Lacombe
Browse files

update repo id and gradio link

parent 0c07fe27
......@@ -3,7 +3,7 @@
[[Paper we reproduce]](https://arxiv.org/abs/2402.01912)
[[Models]](https://huggingface.co/parler-tts)
[[Training Code]](training)
[[Interactive Demo]](TODO - linked to spaces)
[[Interactive Demo]](https://huggingface.co/spaces/parler-tts/parler_tts_mini)
> [!IMPORTANT]
> We're proud to release Parler-TTS v0.1, our first 300M-parameters Parler-TTS model, trained on 10.5K hours of audio data.
......@@ -16,7 +16,7 @@ Contrarily to standard TTS models, Parler-TTS allows you to directly describe th
## Usage
> [!TIP]
> You can directly try it out in an interactive demo [here](TODO: add link to spaces)!
> You can directly try it out in an interactive demo [here](https://huggingface.co/spaces/parler-tts/parler_tts_mini)!
Using Parler-TTS is as simple as "bonjour". Simply use the following inference snippet.
......@@ -25,10 +25,8 @@ from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor
import soundfile as sf
# TODO: change repo id
model = ParlerTTSForConditionalGeneration.from_pretrained("ylacombe/parler_tts_300M_v0.09")
tokenizer = AutoTokenizer.from_pretrained("ylacombe/parler_tts_300M_v0.09")
model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler_tts_300M_v0.1")
tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler_tts_300M_v0.1")
prompt = "Hey, how are you doing today?"
description = "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. She speaks very fast."
......
......@@ -6,9 +6,7 @@ from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
device = "cuda:0" if torch.cuda.is_available() else "cpu"
repo_id = "ylacombe/parler_tts_300M_v0.09"
# TODO: change repo id
repo_id = "parler-tts/parler_tts_300M_v0.1"
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment