run_audio_classification.py 25.9 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
from dataclasses import dataclass, field
from random import randint
22
from typing import List, Optional, Union
sanchit-gandhi's avatar
sanchit-gandhi committed
23
24
25
26
27

import datasets
import evaluate
import numpy as np
import transformers
28
29
from datasets import Dataset, DatasetDict, IterableDataset, concatenate_datasets, interleave_datasets, load_dataset
from tqdm import tqdm
sanchit-gandhi's avatar
sanchit-gandhi committed
30
31
32
33
34
35
36
37
38
39
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoModelForAudioClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
sanchit-gandhi's avatar
sanchit-gandhi committed
40
41
from transformers.utils import check_min_version
from transformers.models.whisper.tokenization_whisper import LANGUAGES
sanchit-gandhi's avatar
sanchit-gandhi committed
42
43
44
45
46
47
48
49


logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")


sanchit-gandhi's avatar
sanchit-gandhi committed
50
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000) -> np.ndarray:
sanchit-gandhi's avatar
sanchit-gandhi committed
51
52
53
54
55
56
57
58
    """Randomly sample chunks of `max_length` seconds from the input audio"""
    sample_length = int(round(sample_rate * max_length))
    if len(wav) <= sample_length:
        return wav
    random_offset = randint(0, len(wav) - sample_length - 1)
    return wav[random_offset : random_offset + sample_length]


sanchit-gandhi's avatar
sanchit-gandhi committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def preprocess_labels(labels: List[str]) -> List[str]:
    """Apply pre-processing formatting to the accent labels"""
    processed_labels = []
    for label in labels:
        if "_" in label:
            # voxpopuli stylises the accent as a language code (e.g. en_pl for "polish") - convert to full accent
            language_code = label.split("_")[-1]
            label = LANGUAGES[language_code]
        if label == "British":
            # 1 speaker in VCTK is labelled as British instead of English - let's normalise
            label = "English"
        processed_labels.append(label.capitalize())
    return processed_labels


sanchit-gandhi's avatar
sanchit-gandhi committed
74
75
76
77
78
79
80
81
82
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

83
84
85
86
87
88
89
    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
90
    )
91
92
93
94
95
96
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
97
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
98
99
100
101
102
103
    train_split_name: str = field(
        default="train",
        metadata={
            "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
        },
    )
104
105
106
107
108
109
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in the training data. Load and combine "
            "multiple datasets by separating dataset samples by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
110
    )
111
112
    eval_dataset_name: str = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
113
        metadata={
114
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
sanchit-gandhi's avatar
sanchit-gandhi committed
115
116
        },
    )
117
118
    eval_dataset_config_name: Optional[str] = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
119
        metadata={
120
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
sanchit-gandhi's avatar
sanchit-gandhi committed
121
122
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
123
124
125
126
127
128
129
130
131
    eval_split_name: str = field(
        default="validation",
        metadata={
            "help": (
                "The name of the evaluation data set split to use (via the datasets"
                " library). Defaults to 'validation'"
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
132
133
134
135
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
136
137
138
139
140
141
142
143
144
    train_label_column_name: str = field(
        default="label",
        metadata={
            "help": "The name of the dataset column containing the labels in the train set. Defaults to 'label'"
        },
    )
    eval_label_column_name: str = field(
        default="label",
        metadata={"help": "The name of the dataset column containing the labels in the eval set. Defaults to 'label'"},
sanchit-gandhi's avatar
sanchit-gandhi committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
        },
    )
    max_length_seconds: float = field(
        default=20,
        metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."},
    )


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="facebook/wav2vec2-base",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "Name or path of preprocessor config."}
    )
    freeze_feature_encoder: bool = field(
        default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
    )
    attention_mask: bool = field(
        default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    splits=None,
    label_column_names=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        label_column_names = label_column_names.split("+") if label_column_names is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if label_column_names is not None and len(label_column_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one label column name is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(label_column_names)} label column names."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    label_column_names = (
        label_column_names if label_column_names is not None else ["label" for _ in range(len(dataset_names))]
    )
    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "label_column_name": label_column_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    splits: Optional[Union[List, str]] = None,
    label_column_names: Optional[List] = None,
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
    streaming: Optional[bool] = True,
    seed: Optional[int] = None,
    audio_column_name: Optional[str] = "audio",
    **kwargs,
) -> Union[Dataset, IterableDataset]:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, splits, label_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
        dataset = load_dataset(
            dataset_dict["name"],
            dataset_dict["config"],
            split=dataset_dict["split"],
            streaming=streaming,
            **kwargs,
        )
        dataset_features = dataset.features.keys()

        if audio_column_name not in dataset_features:
            raise ValueError(
                f"Audio column name '{audio_column_name}' not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to set `--audio_column_name` to"
                f" the correct audio column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
325
            )
326
327

        if dataset_dict["label_column_name"] not in dataset_features:
sanchit-gandhi's avatar
sanchit-gandhi committed
328
            raise ValueError(
329
330
331
                f"Label column name {dataset_dict['text_column_name']} not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to set `--label_column_name` to the"
                f" correct text column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
332
333
            )

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        # blanket renaming of all label columns to label
        if dataset_dict["label_column_name"] != "label":
            dataset = dataset.rename_column(dataset_dict["label_column_name"], "label")

        dataset_features = dataset.features.keys()
        columns_to_keep = {"audio", "label"}
        dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
        interleaved_dataset = concatenate_datasets(all_datasets)

    return interleaved_dataset

sanchit-gandhi's avatar
sanchit-gandhi committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to train from scratch."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset and prepare it for the audio classification task.
    raw_datasets = DatasetDict()
417
418
    # set seed for determinism
    set_seed(training_args.seed)
sanchit-gandhi's avatar
sanchit-gandhi committed
419

420
421
422
423
424
425
426
427
428
429
430
431
    if training_args.do_train:
        raw_datasets["train"] = load_multiple_datasets(
            data_args.train_dataset_name,
            data_args.train_dataset_config_name,
            splits=data_args.train_split_name,
            label_column_names=data_args.train_label_column_name,
            streaming=data_args.streaming,
            dataset_samples=data_args.train_dataset_samples,
            seed=training_args.seed,
            cache_dir=data_args.dataset_cache_dir,
            token=True if model_args.token else None,
            trust_remote_code=data_args.trust_remote_code,
sanchit-gandhi's avatar
sanchit-gandhi committed
432
433
        )

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    if training_args.do_eval:
        dataset_names_dict = convert_dataset_str_to_list(
            data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
            data_args.eval_dataset_config_name
            if data_args.eval_dataset_config_name
            else data_args.train_dataset_config_name,
            splits=data_args.eval_split_name,
            label_column_names=data_args.eval_label_column_name,
        )
        all_eval_splits = []
        if len(dataset_names_dict) == 1:
            # load a single eval set
            dataset_dict = dataset_names_dict[0]
            all_eval_splits.append("eval")
            raw_datasets["eval"] = load_dataset(
                dataset_dict["name"],
                dataset_dict["config"],
                split=dataset_dict["split"],
                cache_dir=data_args.dataset_cache_dir,
                token=True if model_args.token else None,
                streaming=data_args.streaming,
                trust_remote_code=data_args.trust_remote_code,
            )
        else:
            # load multiple eval sets
            for dataset_dict in dataset_names_dict:
                pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
                all_eval_splits.append(pretty_name)
                raw_datasets[pretty_name] = load_dataset(
                    dataset_dict["name"],
                    dataset_dict["config"],
                    split=dataset_dict["split"],
                    cache_dir=data_args.dataset_cache_dir,
                    token=True if model_args.use_auth_token else None,
                    streaming=data_args.streaming,
                    trust_remote_code=data_args.trust_remote_code,
                )
                features = raw_datasets[pretty_name].features.keys()
                if dataset_dict["label_column_name"] not in features:
                    raise ValueError(
sanchit-gandhi's avatar
sanchit-gandhi committed
474
                        f"--label_column_name {data_args.eval_label_column_name} not found in dataset '{data_args.dataset_name}'. "
475
476
477
478
479
480
481
482
483
484
485
486
                        "Make sure to set `--label_column_name` to the correct text column - one of "
                        f"{', '.join(raw_datasets['train'].column_names)}."
                    )
                elif dataset_dict["label_column_name"] != "label":
                    raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
                        dataset_dict["label_column_name"], "label"
                    )
                raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
                    set(raw_datasets[pretty_name].features.keys()) - {"audio", "label"}
                )

    if not training_args.do_train and not training_args.do_eval:
sanchit-gandhi's avatar
sanchit-gandhi committed
487
        raise ValueError(
488
            "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
sanchit-gandhi's avatar
sanchit-gandhi committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        )

    # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
    # transformer outputs in the classifier, but it doesn't always lead to better accuracy
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        return_attention_mask=model_args.attention_mask,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )

    # `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
    )

    model_input_name = feature_extractor.model_input_names[0]

    def train_transforms(batch):
        """Apply train_transforms across a batch."""
        subsampled_wavs = []
        for audio in batch[data_args.audio_column_name]:
            wav = random_subsample(
                audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate
            )
            subsampled_wavs.append(wav)
        inputs = feature_extractor(subsampled_wavs, sampling_rate=feature_extractor.sampling_rate)
        output_batch = {model_input_name: inputs.get(model_input_name)}
sanchit-gandhi's avatar
sanchit-gandhi committed
520
        output_batch["labels"] = preprocess_labels(batch["labels"])
sanchit-gandhi's avatar
sanchit-gandhi committed
521
522
523
524
525
526
527
        return output_batch

    def val_transforms(batch):
        """Apply val_transforms across a batch."""
        wavs = [audio["array"] for audio in batch[data_args.audio_column_name]]
        inputs = feature_extractor(wavs, sampling_rate=feature_extractor.sampling_rate)
        output_batch = {model_input_name: inputs.get(model_input_name)}
sanchit-gandhi's avatar
sanchit-gandhi committed
528
        output_batch["labels"] = preprocess_labels(batch["labels"])
sanchit-gandhi's avatar
sanchit-gandhi committed
529
530
531
532
        return output_batch

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
sanchit-gandhi's avatar
sanchit-gandhi committed
533
    labels = raw_datasets["train"]["label"]
sanchit-gandhi's avatar
sanchit-gandhi committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
    label2id, id2label = {}, {}
    for i, label in enumerate(labels):
        label2id[label] = str(i)
        id2label[str(i)] = label

    # Load the accuracy metric from the datasets package
    metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
    # `predictions` and `label_ids` fields) and has to return a dictionary string to float.
    def compute_metrics(eval_pred):
        """Computes accuracy on a batch of predictions"""
        predictions = np.argmax(eval_pred.predictions, axis=1)
        return metric.compute(predictions=predictions, references=eval_pred.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        num_labels=len(labels),
        label2id=label2id,
        id2label=id2label,
        finetuning_task="audio-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )
    model = AutoModelForAudioClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
    )

    # freeze the convolutional waveform encoder
    if model_args.freeze_feature_encoder:
        model.freeze_feature_encoder()

    if training_args.do_train:
        if data_args.max_train_samples is not None:
            raw_datasets["train"] = (
                raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
        # Set the training transforms
581
582
583
        raw_datasets["train"].set_transform(
            train_transforms, columns=[model_input_name, "labels"], output_all_columns=False
        )
sanchit-gandhi's avatar
sanchit-gandhi committed
584
585
586
587
588
589
590

    if training_args.do_eval:
        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = (
                raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
            )
        # Set the validation transforms
591
592
593
        raw_datasets["eval"].set_transform(
            val_transforms, columns=[model_input_name, "labels"], output_all_columns=False
        )
sanchit-gandhi's avatar
sanchit-gandhi committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=raw_datasets["train"] if training_args.do_train else None,
        eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "audio-classification",
        "dataset": data_args.dataset_name,
        "tags": ["audio-classification"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()