"test/training_service/config/assessors/curvefitting-v2.yml" did not exist on "f04d423af73654cc975211eae3f865b578a03dd9"
run_parler_tts_training.py 46.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Yoach Lacombe's avatar
Yoach Lacombe committed
17
""" Train Parler-TTS using 🤗 Accelerate"""
18
19
20
21

import logging
import os
import re
22
import sys
Yoach Lacombe's avatar
Yoach Lacombe committed
23
import time
24
from dataclasses import dataclass, field
25
from datetime import timedelta
26
27

from tqdm import tqdm
Yoach Lacombe's avatar
Yoach Lacombe committed
28
from pathlib import Path
29
30

import torch
31
32
33
34
35
from torch.utils.data import DataLoader

import datasets
from datasets import DatasetDict, Dataset, IterableDataset, concatenate_datasets

36
import transformers
37
38
39
40
from huggingface_hub import HfApi
from multiprocess import set_start_method
from torch.utils.data import DataLoader
from tqdm import tqdm
41
42
43
from transformers import (
    AutoFeatureExtractor,
    AutoTokenizer,
44
    HfArgumentParser
45
)
46
from transformers.trainer_pt_utils import LengthGroupedSampler
Yoach Lacombe's avatar
Yoach Lacombe committed
47
from transformers.optimization import get_scheduler
48
from transformers.trainer_pt_utils import LengthGroupedSampler
Yoach Lacombe's avatar
Yoach Lacombe committed
49
from transformers.utils import send_example_telemetry
50

51

52
53
54
from accelerate import Accelerator
from accelerate.utils import set_seed, AutocastKwargs, InitProcessGroupKwargs, TorchDynamoPlugin
from accelerate.utils.memory import release_memory
55

Yoach Lacombe's avatar
Yoach Lacombe committed
56
57
from parler_tts import (
    ParlerTTSConfig,
58
    ParlerTTSForConditionalGeneration,
Yoach Lacombe's avatar
Yoach Lacombe committed
59
60
    build_delay_pattern_mask,
)
61

Dan Lyth's avatar
Dan Lyth committed
62
63
64
65
from training.utils import get_last_checkpoint, rotate_checkpoints, log_pred, log_metric
from training.arguments import ModelArguments, DataTrainingArguments, ParlerTTSTrainingArguments
from training.data import load_multiple_datasets, DataCollatorParlerTTSWithPadding, DataCollatorEncodecWithPadding
from training.eval import clap_similarity, wer
66
67


68
logger = logging.getLogger(__name__)
69

Yoach Lacombe's avatar
Yoach Lacombe committed
70

71
72
73
74
75
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

Yoach Lacombe's avatar
Yoach Lacombe committed
76
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, ParlerTTSTrainingArguments))
77
78
79
80
81
82
83
84
85
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
Yoach Lacombe's avatar
Yoach Lacombe committed
86
    send_example_telemetry("run_parler_tts", model_args, data_args)
Yoach Lacombe's avatar
Yoach Lacombe committed
87

Yoach Lacombe's avatar
Yoach Lacombe committed
88
89
90
91
92
93
    if training_args.dtype == "float16":
        mixed_precision = "fp16"
    elif training_args.dtype == "bfloat16":
        mixed_precision = "bf16"
    else:
        mixed_precision = "no"
Yoach Lacombe's avatar
Yoach Lacombe committed
94
95
96
97
98
99
100
101
102

    if data_args.pad_to_max_length and (
        data_args.max_duration_in_seconds is None
        or data_args.max_prompt_token_length is None
        or data_args.max_description_token_length is None
    ):
        raise ValueError(
            "`pad_to_max_length` is `True` but one of the following parameters has not been set: `max_duration_in_seconds`, `max_prompt_token_length`, `max_description_token_length`"
        )
103
104

    padding = "max_length" if data_args.pad_to_max_length else "longest"
105

106
    ####### A. Preparation
107
108
109
    kwargs_handlers = [InitProcessGroupKwargs(timeout=timedelta(minutes=60))]
    if training_args.torch_compile:
        # TODO(YL): add more compile modes?
Yoach Lacombe's avatar
Yoach Lacombe committed
110
111
        kwargs_handlers.append(TorchDynamoPlugin(backend="inductor", mode="default"))  # reduce-overhead

Yoach Lacombe's avatar
Yoach Lacombe committed
112
113
114
115
116
    accelerator = Accelerator(
        gradient_accumulation_steps=training_args.gradient_accumulation_steps,
        mixed_precision=mixed_precision,
        log_with=training_args.report_to,
        project_dir=training_args.output_dir,
117
        kwargs_handlers=kwargs_handlers,
Yoach Lacombe's avatar
Yoach Lacombe committed
118
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

    accelerator.init_trackers(
        project_name=data_args.wandb_project,
        config={
            "learning_rate": training_args.learning_rate,
            "model_name_or_path": model_args.model_name_or_path,
            "num_train_epochs": training_args.num_train_epochs,
            "gradient_accumulation_steps": training_args.gradient_accumulation_steps,
            "per_device_train_batch_size": training_args.per_device_train_batch_size,
            "global_batch_size": training_args.per_device_train_batch_size * accelerator.num_processes,
            "mixed_precision": mixed_precision,
            "lr_scheduler_type": training_args.lr_scheduler_type,
            "warmup_steps": training_args.warmup_steps,
            "freeze_text_encoder": model_args.freeze_text_encoder,
            "max_duration_in_seconds": data_args.max_duration_in_seconds,
            "weight_decay": training_args.weight_decay,
            "adam_beta1": training_args.adam_beta1,
            "adam_beta2": training_args.adam_beta2,
            "temperature": model_args.temperature,
        },
    )

Yoach Lacombe's avatar
Yoach Lacombe committed
141
    # Detecting last checkpoint and eventually continue from last checkpoint
142
143
144
145
146
147
148
149
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
150
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
151
152
153
154
155
156
157
158
159
160
161
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
162
    logger.setLevel(logging.INFO if accelerator.is_main_process else logging.WARN)
163

Yoach Lacombe's avatar
Yoach Lacombe committed
164
    # Log a small summary on each proces
165
166
167
168
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
169
170
171
172

    # Set the verbosity to info of the Transformers logger (on main process only)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
173
        transformers.utils.logging.set_verbosity_info()
Yoach Lacombe's avatar
Yoach Lacombe committed
174
175
176
177
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

178
179
180
181
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)
182
    num_workers = data_args.preprocessing_num_workers
Yoach Lacombe's avatar
Yoach Lacombe committed
183

184
185
186
    # 1. First, lett's instantiate the feature extractor, tokenizers and model
    # Note for distributed training, the .from_pretrained methods guarantee that only
    # one local process can concurrently download model & vocab.
Yoach Lacombe's avatar
Yoach Lacombe committed
187

188
189
190
191
192
193
194
195
    # load feature extractor
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
    sampling_rate = feature_extractor.sampling_rate
Yoach Lacombe's avatar
Yoach Lacombe committed
196

197
198
199
200
201
202
203
    # load prompt tokenizer
    prompt_tokenizer = AutoTokenizer.from_pretrained(
        model_args.prompt_tokenizer_name or model_args.description_tokenizer_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
        use_fast=model_args.use_fast_tokenizer,
Yoach Lacombe's avatar
Yoach Lacombe committed
204
        padding_side="left",  # prompt has to be padded on the left bc it's preprend to codebooks hidden states
205
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
206

207
208
209
210
211
212
213
214
    # load description tokenizer
    description_tokenizer = AutoTokenizer.from_pretrained(
        model_args.description_tokenizer_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
        use_fast=model_args.use_fast_tokenizer,
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
215

216
    if model_args.use_fast_tokenizer:
Yoach Lacombe's avatar
Yoach Lacombe committed
217
218
219
        logger.warning(
            "Disabling fast tokenizer warning: https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py#L3231-L3235"
        )
220
221
        prompt_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
        description_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
222

223
    # 2. Now, let's load the dataset
Yoach Lacombe's avatar
Yoach Lacombe committed
224

225
226
    if data_args.save_to_disk is not None:
        os.makedirs(data_args.save_to_disk, exist_ok=True)
Yoach Lacombe's avatar
Yoach Lacombe committed
227

228
229
230
231
    # assume that the dataset has been saved to `save_to_disk` if the latter is not empty
    dataset_was_precomputed = len(os.listdir(data_args.save_to_disk)) > 0
    if dataset_was_precomputed:
        vectorized_datasets = datasets.load_from_disk(data_args.save_to_disk)
Yoach Lacombe's avatar
Yoach Lacombe committed
232
    else:
233
234
235
236
        raw_datasets = DatasetDict()

        columns_to_keep = {
            "target_audio_column_name": data_args.target_audio_column_name,
Yoach Lacombe's avatar
Yoach Lacombe committed
237
            "prompt_column_name": data_args.prompt_column_name,
238
239
        }
        if data_args.description_column_name is not None:
240
            columns_to_keep["description_column_name"] = data_args.description_column_name
Yoach Lacombe's avatar
Yoach Lacombe committed
241

242
243
244
245
246
247
248
249
250
251
252
253
254
        if training_args.do_train:
            raw_datasets["train"] = load_multiple_datasets(
                accelerator,
                data_args.train_dataset_name,
                data_args.train_dataset_config_name,
                metadata_dataset_names=data_args.train_metadata_dataset_name,
                splits=data_args.train_split_name,
                dataset_samples=data_args.train_dataset_samples,
                seed=training_args.seed,
                cache_dir=model_args.cache_dir,
                num_proc=data_args.preprocessing_num_workers,
                id_column_name=data_args.id_column_name,
                columns_to_keep=columns_to_keep.values(),
255
                prompt_column_name=data_args.prompt_column_name,
256
257
                audio_column_name=data_args.target_audio_column_name,
                sampling_rate=sampling_rate,
258
                logger=logger,
259
260
                # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
261

262
263
264
265
266
267
            for key in columns_to_keep:
                if columns_to_keep[key] not in raw_datasets["train"].column_names:
                    raise ValueError(
                        f"--{key} '{columns_to_keep[key]}' not found in dataset '{data_args.train_dataset_name}'."
                        f" Make sure to set `--{key}` to the correct audio column - one of"
                        f" {', '.join(raw_datasets['train'].column_names)}."
Yoach Lacombe's avatar
Yoach Lacombe committed
268
                    )
269
270
271
272
273
274
275
276

            if data_args.max_train_samples is not None:
                raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))

        if training_args.do_eval:
            raw_datasets["eval"] = load_multiple_datasets(
                accelerator,
                data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
Yoach Lacombe's avatar
Yoach Lacombe committed
277
278
279
                data_args.eval_dataset_config_name
                if data_args.eval_dataset_config_name
                else data_args.train_dataset_config_name,
280
281
282
283
284
285
                metadata_dataset_names=data_args.eval_metadata_dataset_name,
                splits=data_args.eval_split_name,
                cache_dir=model_args.cache_dir,
                num_proc=data_args.preprocessing_num_workers,
                id_column_name=data_args.id_column_name,
                columns_to_keep=columns_to_keep.values(),
286
287
288
                prompt_column_name=data_args.prompt_column_name,
                audio_column_name=data_args.target_audio_column_name,
                sampling_rate=sampling_rate,
289
                logger=logger,
290
291
                # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
            )
292

293
            if data_args.max_eval_samples is not None:
Yoach Lacombe's avatar
Yoach Lacombe committed
294
295
296
                raw_datasets["eval"] = (
                    raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
                )
297

298
    # 3. Next, let's load the config.
Yoach Lacombe's avatar
Yoach Lacombe committed
299
    config = ParlerTTSConfig.from_pretrained(
300
301
302
303
304
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
305

306
    # update pad token id and decoder_start_token_id
Yoach Lacombe's avatar
Yoach Lacombe committed
307
308
309
310
    config.update(
        {
            "pad_token_id": model_args.pad_token_id
            if model_args.pad_token_id is not None
311
            else config.pad_token_id,
Yoach Lacombe's avatar
Yoach Lacombe committed
312
313
            "decoder_start_token_id": model_args.decoder_start_token_id
            if model_args.decoder_start_token_id is not None
314
            else config.decoder_start_token_id,
Yoach Lacombe's avatar
Yoach Lacombe committed
315
316
317
        }
    )

Yoach Lacombe's avatar
Yoach Lacombe committed
318
    # create model
Yoach Lacombe's avatar
Yoach Lacombe committed
319
    model = ParlerTTSForConditionalGeneration.from_pretrained(
320
321
322
323
324
325
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        config=config,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
326

327
328
329
    # enable gradient checkpointing if necessary
    if training_args.gradient_checkpointing:
        model.gradient_checkpointing_enable()
Yoach Lacombe's avatar
Yoach Lacombe committed
330

331
    # 4. Now we preprocess the datasets including loading the audio, resampling and normalization
332
333
334
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`
Yoach Lacombe's avatar
Yoach Lacombe committed
335

336
    # derive max & min input length for sample rate & max duration
337
338
339
    sampling_rate = feature_extractor.sampling_rate
    max_target_length = data_args.max_duration_in_seconds * sampling_rate
    min_target_length = data_args.min_duration_in_seconds * sampling_rate
340
341
342
343
    target_audio_column_name = data_args.target_audio_column_name
    description_column_name = data_args.description_column_name
    prompt_column_name = data_args.prompt_column_name
    feature_extractor_input_name = feature_extractor.model_input_names[0]
Yoach Lacombe's avatar
Yoach Lacombe committed
344
345
    audio_encoder_pad_token_id = config.decoder.pad_token_id
    audio_encoder_eos_token_id = config.decoder.eos_token_id
Yoach Lacombe's avatar
Yoach Lacombe committed
346
347
348
    audio_encoder_bos_token_id = model.generation_config.decoder_start_token_id
    max_length = model.generation_config.max_length
    num_codebooks = model.decoder.config.num_codebooks
Yoach Lacombe's avatar
Yoach Lacombe committed
349
    bandwidth = model_args.bandwidth
Yoach Lacombe's avatar
Yoach Lacombe committed
350

351
352
    # Freeze Encoders
    model.freeze_encoders(model_args.freeze_text_encoder)
Yoach Lacombe's avatar
Yoach Lacombe committed
353

354
355
356
357
358
    # Test all gather - used for warmout and avoiding timeout
    test_tensor = torch.tensor([accelerator.process_index], device=accelerator.device)
    gathered_tensor = accelerator.gather(test_tensor)
    print("gathered_tensor", gathered_tensor)
    accelerator.wait_for_everyone()
Yoach Lacombe's avatar
Yoach Lacombe committed
359
360

    if not dataset_was_precomputed:
361
        # Filter on text length
362
        if description_column_name is not None and data_args.max_text_length is not None:
363
364
365
366
367
368
369
            with accelerator.main_process_first():
                # filter description that is shorter than max_text_length
                raw_datasets = raw_datasets.filter(
                    lambda x: len(x) < data_args.max_text_length,
                    num_proc=num_workers,
                    input_columns=[description_column_name],
                )
370

371
372
373
374
        # Preprocessing the dataset.
        # We need to tokenize the texts.
        def pass_through_processors(description, prompt):
            batch = {}
Yoach Lacombe's avatar
Yoach Lacombe committed
375

376
377
            batch["input_ids"] = description_tokenizer(description.strip())["input_ids"]
            batch["prompt_input_ids"] = prompt_tokenizer(prompt.strip())["input_ids"]
378
379

            return batch
Yoach Lacombe's avatar
Yoach Lacombe committed
380

381
        with accelerator.main_process_first():
382
            # this is a trick to avoid to rewrite the entire audio column which takes ages
383
            vectorized_datasets = raw_datasets.map(
384
385
                pass_through_processors,
                remove_columns=next(iter(raw_datasets.values())).column_names,
386
                input_columns=[description_column_name, prompt_column_name],
387
388
389
                num_proc=num_workers,
                desc="preprocess datasets",
            )
390

391
        # We use Accelerate to perform distributed inference
392
        # T5 doesn't support fp16
Yoach Lacombe's avatar
Yoach Lacombe committed
393
        autocast_kwargs = AutocastKwargs(enabled=(mixed_precision != "fp16"))
394
395

        # Now we encode the audio labels with encodec.
396
        ####### B. Encode audio
397

398
        logger.info("*** Encode target audio with encodec ***")
Yoach Lacombe's avatar
Yoach Lacombe committed
399

400
401
        # no need to prepare audio_decoder because used for inference without mixed precision
        # see: https://huggingface.co/docs/accelerate/main/en/package_reference/accelerator#accelerate.Accelerator.prepare
402
403
404
405
        if training_args.torch_compile:
            audio_decoder = accelerator.prepare_model(model.audio_encoder, evaluation_mode=True)
        else:
            audio_decoder = model.audio_encoder
406

Yoach Lacombe's avatar
Yoach Lacombe committed
407
408
409
410
411
412
413
        encoder_data_collator = DataCollatorEncodecWithPadding(
            feature_extractor,
            audio_column_name=target_audio_column_name,
            feature_extractor_input_name=feature_extractor_input_name,
            max_length=max_target_length,
            padding=padding,
        )
414
415
416
417
418
419
420
421
422

        def apply_audio_decoder(batch):
            len_audio = batch.pop("len_audio")
            audio_decoder.to(batch["input_values"].device).eval()
            with torch.no_grad():
                labels = audio_decoder.encode(**batch, bandwidth=bandwidth)["audio_codes"]
            output = {}
            output["len_audio"] = len_audio
            # (1, bsz, codebooks, seq_len) -> (bsz, seq_len, codebooks)
Yoach Lacombe's avatar
Yoach Lacombe committed
423
424
            output["labels"] = labels.squeeze(0).transpose(1, 2)
            output["ratio"] = torch.ones_like(len_audio) * labels.shape[-1] / len_audio.max()
Yoach Lacombe's avatar
Yoach Lacombe committed
425
            return output
426

427
428
        for split in vectorized_datasets:
            data_loader = DataLoader(
429
                raw_datasets[split],
Yoach Lacombe's avatar
Yoach Lacombe committed
430
                batch_size=training_args.audio_encoder_per_device_batch_size,
431
432
433
                collate_fn=encoder_data_collator,
                num_workers=training_args.dataloader_num_workers,
                pin_memory=True,
434
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
435
436
            data_loader = accelerator.prepare(data_loader)

437
438
439
440
441
442
            all_generated_labels = []
            all_lens = []
            for batch in tqdm(data_loader, disable=not accelerator.is_local_main_process):
                generate_labels = apply_audio_decoder(batch)
                generate_labels = accelerator.pad_across_processes(generate_labels, dim=1, pad_index=0)
                generate_labels = accelerator.gather_for_metrics(generate_labels)
Yoach Lacombe's avatar
Yoach Lacombe committed
443

444
                if accelerator.is_main_process:
Yoach Lacombe's avatar
Yoach Lacombe committed
445
                    lab = generate_labels["labels"].cpu().transpose(1, 2).to(torch.int16)
446
447
                    rat = generate_labels["ratio"].cpu().squeeze()
                    lens = generate_labels["len_audio"].cpu().squeeze()
Yoach Lacombe's avatar
Yoach Lacombe committed
448
449
                    lab = [l[:, : int(ratio * length)] for (l, ratio, length) in zip(lab, rat, lens)]

450
451
                    all_generated_labels.extend(lab)
                    all_lens.extend(lens)
Yoach Lacombe's avatar
Yoach Lacombe committed
452

453
454
            # (1, codebooks, seq_len) where seq_len=1
            bos_labels = torch.ones((1, num_codebooks, 1)) * audio_encoder_bos_token_id
Yoach Lacombe's avatar
Yoach Lacombe committed
455

456
            if accelerator.is_main_process:
457
                tmp_labels = Dataset.from_dict({"labels": all_generated_labels, "target_length": all_lens})
Yoach Lacombe's avatar
Yoach Lacombe committed
458
459
460
461
                tmp_labels.save_to_disk(
                    os.path.join(data_args.temporary_save_to_disk, split),
                    num_proc=1 if split == "eval" else data_args.preprocessing_num_workers,
                )
462
463
            accelerator.wait_for_everyone()
            del all_generated_labels
Yoach Lacombe's avatar
Yoach Lacombe committed
464

465
            tmp_labels = datasets.load_from_disk(os.path.join(data_args.temporary_save_to_disk, split))
466
467
            with accelerator.main_process_first():
                vectorized_datasets[split] = concatenate_datasets([vectorized_datasets[split], tmp_labels], axis=1)
Yoach Lacombe's avatar
Yoach Lacombe committed
468

469
            def postprocess_dataset(labels):
470
                # (1, codebooks, seq_len)
Yoach Lacombe's avatar
Yoach Lacombe committed
471
                labels = torch.tensor(labels).unsqueeze(0)
472
473
                # add bos
                labels = torch.cat([bos_labels, labels], dim=-1)
Yoach Lacombe's avatar
Yoach Lacombe committed
474
475
476
477
478
479
480
481
482

                labels, delay_pattern_mask = build_delay_pattern_mask(
                    labels,
                    bos_token_id=audio_encoder_bos_token_id,
                    pad_token_id=audio_encoder_eos_token_id,
                    max_length=labels.shape[-1] + num_codebooks,
                    num_codebooks=num_codebooks,
                )

483
484
485
486
487
488
                # the first ids of the delay pattern mask are precisely labels, we use the rest of the labels mask
                # to take care of EOS
                # we want labels to look like this:
                #  - [B, a, b, E, E, E, E]
                #  - [B, B, c, d, E, E, E]
                #  - [B, B, B, e, f, E, E]
Yoach Lacombe's avatar
Yoach Lacombe committed
489
490
491
                #  - [B, B, B, B, g, h, E]
                labels = torch.where(delay_pattern_mask == -1, audio_encoder_eos_token_id, delay_pattern_mask)

492
493
                # the first timestamp is associated to a row full of BOS, let's get rid of it
                # we also remove the last timestampts (full of PAD)
494
                output = {"labels": labels[:, 1:]}
495
496
497
498
499
                return output

            with accelerator.main_process_first():
                vectorized_datasets[split] = vectorized_datasets[split].map(
                    postprocess_dataset,
Yoach Lacombe's avatar
Yoach Lacombe committed
500
                    num_proc=data_args.preprocessing_num_workers,  # this one is resource consuming if many processor.
501
                    input_columns=["labels"],
502
503
504
505
                    desc="Postprocessing labeling",
                )

        accelerator.free_memory()
506
        del generate_labels, all_lens
507

508
        with accelerator.main_process_first():
509
            # NOTE: filtering is done at the end because in the `datasets` library, caching audio files is done after most operations
Yoach Lacombe's avatar
Yoach Lacombe committed
510
            # caching audio files is time and disk-space consuming, so we want to avoid it at all costs, especially for large (>1Kh) audio datasets.
511
512
            # That's also why we avoid to concat the processed datasets (vectorized_datasets) with the audio column present in raw_datasets.

513
514
515
516
517
518
519
520
521
            def is_audio_in_length_range(length):
                return length > min_target_length and length < max_target_length

            # filter data that is shorter than min_target_length
            vectorized_datasets = vectorized_datasets.filter(
                is_audio_in_length_range,
                num_proc=num_workers,
                input_columns=["target_length"],
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
            if description_column_name is not None and data_args.max_description_token_length is not None:
                with accelerator.main_process_first():
                    # filter description that is shorter than max_text_length
                    vectorized_datasets = vectorized_datasets.filter(
                        lambda x: len(x) < data_args.max_description_token_length,
                        num_proc=num_workers,
                        input_columns=["input_ids"],
                    )

            if data_args.max_prompt_token_length is not None:
                with accelerator.main_process_first():
                    # filter description that is shorter than max_text_length
                    vectorized_datasets = vectorized_datasets.filter(
                        lambda x: len(x) < data_args.max_prompt_token_length,
                        num_proc=num_workers,
                        input_columns=["prompt_input_ids"],
                    )
Yoach Lacombe's avatar
Yoach Lacombe committed
540

541
    if data_args.save_to_disk is not None and not dataset_was_precomputed:
542
        if accelerator.is_main_process:
Yoach Lacombe's avatar
Yoach Lacombe committed
543
544
545
546
            vectorized_datasets.save_to_disk(
                data_args.save_to_disk,
                num_proc=min(data_args.preprocessing_num_workers, len(vectorized_datasets["eval"]) - 1),
            )
547
        logger.info(f"Dataset saved at {data_args.save_to_disk}")
Yoach Lacombe's avatar
Yoach Lacombe committed
548

549
550
551
    audio_max_length = None
    if training_args.torch_compile:
        audio_max_length = max(vectorized_datasets["train"]["target_length"])
Yoach Lacombe's avatar
Yoach Lacombe committed
552
        with accelerator.main_process_first():
553
            max_sample = vectorized_datasets["train"].filter(
Yoach Lacombe's avatar
Yoach Lacombe committed
554
555
556
557
                lambda x: x == audio_max_length,
                num_proc=num_workers,
                input_columns=["target_length"],
            )
558
        audio_max_length = torch.tensor(max_sample[0]["labels"]).shape[1]
559
560
561
562
563
564

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
565
    if data_args.preprocessing_only and data_args.save_to_disk is None:
Yoach Lacombe's avatar
Yoach Lacombe committed
566
567
568
        raise ValueError(
            "`preprocessing_only=True` but `save_to_disk` is not set. The latter should indicates where to save the dataset locally."
        )
569
570
    elif data_args.preprocessing_only:
        logger.info(f"Data preprocessing finished. Files save at {data_args.save_to_disk}")
571
        return
Yoach Lacombe's avatar
Yoach Lacombe committed
572

573
    # 6. Next, we can prepare the training.
Yoach Lacombe's avatar
Yoach Lacombe committed
574

Yoach Lacombe's avatar
Yoach Lacombe committed
575
576
    # Let's use word CLAP similary and WER metrics as our evaluation metrics,
    def compute_metrics(audios, descriptions, prompts, device="cpu"):
577
        results = {}
Yoach Lacombe's avatar
Yoach Lacombe committed
578
        input_ids = descriptions
579
        texts = description_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
Yoach Lacombe's avatar
Yoach Lacombe committed
580
581
        prompts = prompt_tokenizer.batch_decode(prompts, skip_special_tokens=True)
        audios = [a.cpu().numpy() for a in audios]
582
583
584
585
586
587
588
589
590
591
        
        clap_score = clap_similarity(model_args.clap_model_name_or_path, texts, audios, device)
        results["clap"] = clap_score

        word_error, transcriptions = wer(model_args.asr_model_name_or_path,
                                        prompts,
                                        audios,
                                        device,
                                        training_args.per_device_eval_batch_size,
                                        sampling_rate)
Yoach Lacombe's avatar
Yoach Lacombe committed
592
        results["wer"] = word_error
593

Yoach Lacombe's avatar
Yoach Lacombe committed
594
        return results, texts, prompts, audios, transcriptions
Yoach Lacombe's avatar
Yoach Lacombe committed
595

Yoach Lacombe's avatar
Yoach Lacombe committed
596
597
598
599
600
601
    # Define Training Schedule
    # Store some constants
    per_device_train_batch_size = int(training_args.per_device_train_batch_size)
    train_batch_size = per_device_train_batch_size * accelerator.num_processes
    gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
Yoach Lacombe's avatar
Yoach Lacombe committed
602

Yoach Lacombe's avatar
Yoach Lacombe committed
603
604
605
606
607
608
609
610
611
612
613
614
    if training_args.max_steps < 0:
        num_epochs = int(training_args.num_train_epochs)
        steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
        total_train_steps = steps_per_epoch * num_epochs
    elif training_args.max_steps > 0:
        logger.info("max_steps is given, it will override any value given in num_train_epochs")
        total_train_steps = int(training_args.max_steps)
        # Setting a very large number of epochs so we go as many times as necessary over the iterator.
        num_epochs = sys.maxsize
        steps_per_epoch = total_train_steps

    if training_args.eval_steps is None:
Yoach Lacombe's avatar
Yoach Lacombe committed
615
        logger.info(f"eval_steps is not set, evaluating at the end of each epoch")
Yoach Lacombe's avatar
Yoach Lacombe committed
616
617
618
        eval_steps = steps_per_epoch
    else:
        eval_steps = training_args.eval_steps
Yoach Lacombe's avatar
Yoach Lacombe committed
619

620
    # T5 doesn't support fp16
Yoach Lacombe's avatar
Yoach Lacombe committed
621
622
    autocast_kwargs = AutocastKwargs(enabled=(mixed_precision != "fp16"))

Yoach Lacombe's avatar
Yoach Lacombe committed
623
624
625
626
627
628
    # Define optimizer, LR scheduler, collator
    optimizer = torch.optim.AdamW(
        params=model.parameters(),
        lr=training_args.learning_rate,
        betas=(training_args.adam_beta1, training_args.adam_beta2),
        eps=training_args.adam_epsilon,
629
        weight_decay=training_args.weight_decay,
Yoach Lacombe's avatar
Yoach Lacombe committed
630
    )
631

Yoach Lacombe's avatar
Yoach Lacombe committed
632
633
634
635
    # LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
    lr_scheduler = get_scheduler(
        name=training_args.lr_scheduler_type,
        optimizer=optimizer,
Yoach Lacombe's avatar
Yoach Lacombe committed
636
        num_warmup_steps=training_args.get_warmup_steps(total_train_steps) * accelerator.num_processes,
Yoach Lacombe's avatar
Yoach Lacombe committed
637
638
        num_training_steps=total_train_steps * accelerator.num_processes,
    )
639
640

    # Instantiate custom data collator
Yoach Lacombe's avatar
Yoach Lacombe committed
641
    data_collator = DataCollatorParlerTTSWithPadding(
Yoach Lacombe's avatar
Yoach Lacombe committed
642
643
644
645
646
647
648
        prompt_tokenizer=prompt_tokenizer,
        description_tokenizer=description_tokenizer,
        pad_to_multiple_of=data_args.pad_to_multiple_of,
        padding=padding,
        prompt_max_length=data_args.max_prompt_token_length,
        description_max_length=data_args.max_description_token_length,
        audio_max_length=audio_max_length,
649
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
650

Yoach Lacombe's avatar
Yoach Lacombe committed
651
652
    # Prepare everything with accelerate
    model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
Yoach Lacombe's avatar
Yoach Lacombe committed
653

Yoach Lacombe's avatar
Yoach Lacombe committed
654
655
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
656
    logger.info("  Instantaneous batch size per device =" f" {per_device_train_batch_size}")
Yoach Lacombe's avatar
Yoach Lacombe committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    logger.info("  Gradient accumulation steps =" f" {gradient_accumulation_steps}")
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
    )
    logger.info(f"  Total optimization steps = {total_train_steps}")

    # ======================== Training ================================
    train_time = 0
    train_start = time.time()
    steps_trained_progress_bar = tqdm(
        range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
    )
    continue_training = True
    epochs_trained = 0
    cur_step = 0

    checkpoint = None
    if training_args.resume_from_checkpoint is not None:
        checkpoint = training_args.resume_from_checkpoint
    elif last_checkpoint is not None:
        checkpoint = last_checkpoint
Yoach Lacombe's avatar
Yoach Lacombe committed
678

Yoach Lacombe's avatar
Yoach Lacombe committed
679
680
    if accelerator.is_main_process:
        if training_args.push_to_hub:
681
682
683
            api = HfApi(token=training_args.hub_token)

            # Create repo (repo_name from args or inferred)
Yoach Lacombe's avatar
Yoach Lacombe committed
684
685
686
            repo_name = training_args.hub_model_id
            if repo_name is None:
                repo_name = Path(training_args.output_dir).absolute().name
687
            repo_id = api.create_repo(repo_name, exist_ok=True).repo_id
Yoach Lacombe's avatar
Yoach Lacombe committed
688
689
690
691
692
693
694

            with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
                if "wandb" not in gitignore:
                    gitignore.write("wandb\n")
        elif training_args.output_dir is not None:
            os.makedirs(training_args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()
Yoach Lacombe's avatar
Yoach Lacombe committed
695

Yoach Lacombe's avatar
Yoach Lacombe committed
696
697
698
699
700
701
    # Now save everything to be able to create a single processor later
    # make sure all processes wait until data is saved
    with accelerator.main_process_first():
        # only the main process saves them
        if accelerator.is_main_process:
            # save feature extractor, tokenizer and config
Yoach Lacombe's avatar
Yoach Lacombe committed
702
703
704
705
706
            if (
                model_args.prompt_tokenizer_name is None
                and model_args.description_tokenizer_name
                or (model_args.prompt_tokenizer_name == model_args.description_tokenizer_name)
            ):
Yoach Lacombe's avatar
Yoach Lacombe committed
707
708
                prompt_tokenizer.save_pretrained(training_args.output_dir)
            else:
Yoach Lacombe's avatar
Yoach Lacombe committed
709
                logger.warning(
710
                    f"Prompt tokenizer ('{model_args.prompt_tokenizer_name}') and description tokenizer ('{model_args.description_tokenizer_name}') are not the same. Saving only the prompt tokenizer."
Yoach Lacombe's avatar
Yoach Lacombe committed
711
                )
Yoach Lacombe's avatar
Yoach Lacombe committed
712
                prompt_tokenizer.save_pretrained(training_args.output_dir)
Yoach Lacombe's avatar
Yoach Lacombe committed
713

Yoach Lacombe's avatar
Yoach Lacombe committed
714
715
            feature_extractor.save_pretrained(training_args.output_dir)
            config.save_pretrained(training_args.output_dir)
Yoach Lacombe's avatar
Yoach Lacombe committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

    if checkpoint is not None:
        accelerator.load_state(checkpoint)
        # Find num steps and epoch from saved state string pattern
        pattern = r"checkpoint-(\d+)-epoch-(\d+)"
        match = re.search(pattern, checkpoint)
        cur_step = int(match.group(1))
        epochs_trained = int(match.group(2))

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info(f"  Continuing training from epoch {epochs_trained}")
        logger.info(f"  Continuing training from global step {cur_step}")

        steps_trained_progress_bar.update(cur_step)

        for epoch in range(0, epochs_trained):
            vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
Yoach Lacombe's avatar
Yoach Lacombe committed
733

Yoach Lacombe's avatar
Yoach Lacombe committed
734
735
        if training_args.max_steps < 0:
            # we know exactly the number of steps per epoch, so can skip through the required number of batches
736
            resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
Yoach Lacombe's avatar
Yoach Lacombe committed
737
738
739
740
741
742
743
744
        else:
            # Currently we don't know how many steps we've taken in the current epoch
            # So we just shuffle the dataset one extra time and start from a fresh epoch
            # This is "good enough" for our purposes but not fully correct
            resume_step = None
            vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
    else:
        resume_step = None
Yoach Lacombe's avatar
Yoach Lacombe committed
745

Yoach Lacombe's avatar
Yoach Lacombe committed
746
747
    gen_kwargs = {
        "do_sample": model_args.do_sample,
yoach@huggingface.co's avatar
yoach@huggingface.co committed
748
        "temperature": model_args.temperature,
Yoach Lacombe's avatar
Yoach Lacombe committed
749
750
        "max_length": model_args.max_length,
    }
Yoach Lacombe's avatar
Yoach Lacombe committed
751

Yoach Lacombe's avatar
Yoach Lacombe committed
752
753
754
    # Define gradient update step fn
    def train_step(
        batch,
755
756
        accelerator,
        autocast_kwargs,
Yoach Lacombe's avatar
Yoach Lacombe committed
757
758
    ):
        model.train()
Yoach Lacombe's avatar
Yoach Lacombe committed
759

760
        if mixed_precision == "fp16":
761
762
            # fp16 doesn't work with T5-like models
            with accelerator.autocast(autocast_handler=autocast_kwargs):
763
                if training_args.parallel_mode.value != "distributed":
Yoach Lacombe's avatar
Yoach Lacombe committed
764
765
766
                    encoder_outputs = model.text_encoder(
                        input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
                    )
767
                else:
Yoach Lacombe's avatar
Yoach Lacombe committed
768
769
770
                    encoder_outputs = model.module.text_encoder(
                        input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
                    )
771
                batch["encoder_outputs"] = encoder_outputs
Yoach Lacombe's avatar
Yoach Lacombe committed
772

Yoach Lacombe's avatar
Yoach Lacombe committed
773
774
775
776
777
778
        outputs = model(**batch)
        # CE (data) loss
        ce_loss = outputs.loss

        metrics = {"loss": ce_loss}
        return ce_loss, metrics
Yoach Lacombe's avatar
Yoach Lacombe committed
779

Yoach Lacombe's avatar
Yoach Lacombe committed
780
    # Define eval fn
Yoach Lacombe's avatar
Yoach Lacombe committed
781
782
783
784
785
    def eval_step(
        batch,
        accelerator,
        autocast_kwargs,
    ):
Yoach Lacombe's avatar
Yoach Lacombe committed
786
787
788
        eval_model = model if not training_args.torch_compile else model._orig_mod
        eval_model.eval()

789
        if mixed_precision == "fp16":
790
791
            # fp16 doesn't work with T5-like models
            with accelerator.autocast(autocast_handler=autocast_kwargs):
Yoach Lacombe's avatar
Yoach Lacombe committed
792
793
                with torch.no_grad():
                    if training_args.parallel_mode.value != "distributed" or training_args.torch_compile:
Yoach Lacombe's avatar
Yoach Lacombe committed
794
795
796
                        encoder_outputs = eval_model.text_encoder(
                            input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
                        )
Yoach Lacombe's avatar
Yoach Lacombe committed
797
                    else:
Yoach Lacombe's avatar
Yoach Lacombe committed
798
799
800
                        encoder_outputs = eval_model.module.text_encoder(
                            input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
                        )
801
                batch["encoder_outputs"] = encoder_outputs
Yoach Lacombe's avatar
Yoach Lacombe committed
802
803

        with torch.no_grad():
Yoach Lacombe's avatar
Yoach Lacombe committed
804
            outputs = eval_model(**batch)
Yoach Lacombe's avatar
Yoach Lacombe committed
805
806
807
808
809
810
        # CE (data) loss
        ce_loss = outputs.loss
        metrics = {"loss": ce_loss}
        return metrics

    def generate_step(batch):
811
        batch.pop("decoder_attention_mask", None)
Yoach Lacombe's avatar
Yoach Lacombe committed
812
        eval_model = accelerator.unwrap_model(model, keep_fp32_wrapper=mixed_precision != "fp16").eval()
Yoach Lacombe's avatar
Yoach Lacombe committed
813
814
815
816
        if training_args.torch_compile:
            eval_model = model._orig_mod

        output_audios = eval_model.generate(**batch, **gen_kwargs)
Yoach Lacombe's avatar
Yoach Lacombe committed
817
818
819
820
821
        output_audios = accelerator.pad_across_processes(output_audios, dim=1, pad_index=0)
        return output_audios

    for epoch in range(epochs_trained, num_epochs):
        vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
Yoach Lacombe's avatar
Yoach Lacombe committed
822
823
824
        sampler = None
        if training_args.group_by_length:
            sampler = LengthGroupedSampler(train_batch_size, lengths=vectorized_datasets["train"]["target_length"])
Yoach Lacombe's avatar
Yoach Lacombe committed
825
826
827
828
        train_dataloader = DataLoader(
            vectorized_datasets["train"],
            collate_fn=data_collator,
            batch_size=per_device_train_batch_size,
Yoach Lacombe's avatar
Yoach Lacombe committed
829
            sampler=sampler,
Yoach Lacombe's avatar
Yoach Lacombe committed
830
831
832
833
834
835
836
837
838
839
840
841
842
843
            num_workers=training_args.dataloader_num_workers,
            pin_memory=training_args.dataloader_pin_memory,
        )
        train_dataloader = accelerator.prepare(train_dataloader)
        if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
            train_dataloader.dataset.set_epoch(epoch)

        if resume_step is not None:
            # Skip the first N batches in the dataloader when resuming from a checkpoint
            train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
            resume_step = None

        for batch in train_dataloader:
            with accelerator.accumulate(model):
844
                loss, train_metric = train_step(batch, accelerator, autocast_kwargs)
Yoach Lacombe's avatar
Yoach Lacombe committed
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), training_args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Check if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                steps_trained_progress_bar.update(1)
                cur_step += 1

                if cur_step % training_args.logging_steps == 0:
                    steps_trained_progress_bar.write(
                        f"Step... ({cur_step} / {total_train_steps} | Loss:"
                        f" {train_metric['loss']}, Learning Rate:"
                        f" {lr_scheduler.get_last_lr()[0]})"
                    )
                    log_metric(
                        accelerator,
                        metrics=train_metric,
                        learning_rate=lr_scheduler.get_last_lr()[0],
                        train_time=train_time + time.time() - train_start,
                        step=cur_step,
                        epoch=epoch,
                        prefix="train",
                    )

                # save checkpoint and weights after each save_steps and at the end of training
                if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
                    intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
Yoach Lacombe's avatar
Yoach Lacombe committed
876
                    # safe_serialization=False to avoid shared tensors saving issue (TODO(YL): it's a temporary fix)
877
878
                    # https://github.com/huggingface/transformers/issues/27293#issuecomment-1872560074
                    accelerator.save_state(output_dir=intermediate_dir, safe_serialization=False)
Yoach Lacombe's avatar
Yoach Lacombe committed
879
880
                    accelerator.wait_for_everyone()
                    if accelerator.is_main_process:
881
                        rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir, logger=logger)
Yoach Lacombe's avatar
Yoach Lacombe committed
882
883
884

                        if cur_step == total_train_steps:
                            # un-wrap student model for save
Yoach Lacombe's avatar
Yoach Lacombe committed
885
886
                            unwrapped_model = accelerator.unwrap_model(model)
                            unwrapped_model.save_pretrained(training_args.output_dir)
Yoach Lacombe's avatar
Yoach Lacombe committed
887
888

                        if training_args.push_to_hub:
889
890
891
                            api.upload_folder(
                                repo_id=repo_id,
                                folder_path=training_args.output_dir,
Yoach Lacombe's avatar
Yoach Lacombe committed
892
                                commit_message=f"Saving train state of step {cur_step}",
893
                                run_as_future=True,
Yoach Lacombe's avatar
Yoach Lacombe committed
894
895
896
897
898
899
900
901
902
903
                            )

                if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
                    train_time += time.time() - train_start
                    # ======================== Evaluating ==============================
                    eval_metrics = []
                    eval_preds = []
                    eval_descriptions = []
                    eval_prompts = []
                    eval_start = time.time()
Yoach Lacombe's avatar
Yoach Lacombe committed
904

Yoach Lacombe's avatar
Yoach Lacombe committed
905
906
                    # release training input batch
                    batch = release_memory(batch)
Yoach Lacombe's avatar
Yoach Lacombe committed
907
908
909
910
911

                    validation_dataloader = DataLoader(
                        vectorized_datasets["eval"],
                        collate_fn=data_collator,
                        batch_size=per_device_eval_batch_size,
912
                        drop_last=False,
Yoach Lacombe's avatar
Yoach Lacombe committed
913
914
915
916
917
918
919
                        num_workers=training_args.dataloader_pin_memory,
                        pin_memory=training_args.dataloader_pin_memory,
                    )
                    validation_dataloader = accelerator.prepare(validation_dataloader)

                    for batch in tqdm(
                        validation_dataloader,
920
                        desc=f"Evaluating - Inference ...",
Yoach Lacombe's avatar
Yoach Lacombe committed
921
922
923
924
                        position=2,
                        disable=not accelerator.is_local_main_process,
                    ):
                        # Model forward
925
                        eval_metric = eval_step(batch, accelerator, autocast_kwargs)
Yoach Lacombe's avatar
Yoach Lacombe committed
926
927
928
                        eval_metric = accelerator.gather_for_metrics(eval_metric)
                        eval_metrics.append(eval_metric)

929
930
931
932
933
934
935
936
937
938
                    if training_args.predict_with_generate:
                        validation_dataloader = DataLoader(
                            vectorized_datasets["eval"],
                            collate_fn=data_collator,
                            batch_size=per_device_eval_batch_size,
                            drop_last=False,
                            num_workers=training_args.dataloader_pin_memory,
                            pin_memory=training_args.dataloader_pin_memory,
                        )
                        validation_dataloader = accelerator.prepare(validation_dataloader)
Yoach Lacombe's avatar
Yoach Lacombe committed
939
                        # generation
940
                        for batch in tqdm(
Yoach Lacombe's avatar
Yoach Lacombe committed
941
942
943
944
945
                            validation_dataloader,
                            desc=f"Evaluating - Generation ...",
                            position=2,
                            disable=not accelerator.is_local_main_process,
                        ):
Yoach Lacombe's avatar
Yoach Lacombe committed
946
947
                            generated_audios = generate_step(batch)
                            # Gather all predictions and targets
Yoach Lacombe's avatar
Yoach Lacombe committed
948
949
950
951
952
953
                            generated_audios, input_ids, prompts = accelerator.pad_across_processes(
                                (generated_audios, batch["input_ids"], batch["prompt_input_ids"]), dim=1, pad_index=0
                            )
                            generated_audios, input_ids, prompts = accelerator.gather_for_metrics(
                                (generated_audios, input_ids, prompts)
                            )
954
955
956
                            eval_preds.extend(generated_audios.to("cpu"))
                            eval_descriptions.extend(input_ids.to("cpu"))
                            eval_prompts.extend(prompts.to("cpu"))
Yoach Lacombe's avatar
Yoach Lacombe committed
957
958
959
960

                    eval_time = time.time() - eval_start
                    # normalize eval metrics
                    eval_metrics = {
Yoach Lacombe's avatar
Yoach Lacombe committed
961
962
                        key: torch.mean(torch.cat([d[key].unsqueeze(0) for d in eval_metrics]))
                        for key in eval_metrics[0]
Yoach Lacombe's avatar
Yoach Lacombe committed
963
964
965
966
967
968
969
970
971
972
                    }

                    # compute metrics
                    metrics_desc = ""
                    if training_args.predict_with_generate:
                        metric_values, pred_descriptions, pred_prompts, audios, transcriptions = compute_metrics(
                            eval_preds, eval_descriptions, eval_prompts, accelerator.device
                        )
                        eval_metrics.update(metric_values)
                        metrics_desc = " ".join([f"Eval {key}: {value} |" for key, value in metric_values.items()])
973
974
975
976
977
978
979
980
981
982
983
                        if "wandb" in training_args.report_to:
                            log_pred(
                                accelerator,
                                pred_descriptions,
                                pred_prompts,
                                transcriptions,
                                audios,
                                sampling_rate=sampling_rate,
                                step=cur_step,
                                prefix="eval",
                            )
Yoach Lacombe's avatar
Yoach Lacombe committed
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998

                    # Print metrics and update progress bar
                    steps_trained_progress_bar.write(
                        f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
                        f" {metrics_desc})"
                    )

                    log_metric(
                        accelerator,
                        metrics=eval_metrics,
                        train_time=eval_time,
                        step=cur_step,
                        epoch=epoch,
                        prefix="eval",
                    )
Yoach Lacombe's avatar
Yoach Lacombe committed
999

1000
1001
1002
1003
1004
1005
1006
                    # release eval batch and relax metrics
                    eval_metrics = []
                    eval_preds = []
                    eval_descriptions = []
                    eval_prompts = []
                    batch = release_memory(batch)

Yoach Lacombe's avatar
Yoach Lacombe committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
                    # flush the train metrics
                    train_start = time.time()

                # break condition
                if cur_step == total_train_steps:
                    continue_training = False
                    break

        if not continue_training:
            break

    accelerator.end_training()
1019
1020
1021


if __name__ == "__main__":
1022
    set_start_method("spawn")
Dan Lyth's avatar
Dan Lyth committed
1023
    main()