init_dummy_model.py 2.55 KB
Newer Older
Yoach Lacombe's avatar
Yoach Lacombe committed
1
import argparse
eustlb's avatar
eustlb committed
2
3
4
5
6
import os

from transformers import AutoConfig

from parler_tts import ParlerTTSDecoderConfig, ParlerTTSForCausalLM, ParlerTTSForConditionalGeneration
Yoach Lacombe's avatar
Yoach Lacombe committed
7
8
9


if __name__ == "__main__":
Yoach Lacombe's avatar
Yoach Lacombe committed
10
    parser = argparse.ArgumentParser()
Yoach Lacombe's avatar
Yoach Lacombe committed
11
    parser.add_argument("save_directory", type=str, help="Directory where to save the model and the decoder.")
Yoach Lacombe's avatar
Yoach Lacombe committed
12
13
    parser.add_argument("--text_model", type=str, help="Repository id or path to the text encoder.")
    parser.add_argument("--audio_model", type=str, help="Repository id or path to the audio encoder.")
Yoach Lacombe's avatar
Yoach Lacombe committed
14

Yoach Lacombe's avatar
Yoach Lacombe committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    args = parser.parse_args()

    text_model = args.text_model
    encodec_version = args.audio_model

    t5 = AutoConfig.from_pretrained(text_model)
    encodec = AutoConfig.from_pretrained(encodec_version)

    encodec_vocab_size = encodec.codebook_size
    num_codebooks = encodec.num_codebooks
    print("num_codebooks", num_codebooks)

    decoder_config = ParlerTTSDecoderConfig(
        vocab_size=encodec_vocab_size + 1,
        max_position_embeddings=2048,
        num_hidden_layers=4,
        ffn_dim=512,
        num_attention_heads=8,
        layerdrop=0.0,
        use_cache=True,
        activation_function="gelu",
        hidden_size=512,
        dropout=0.0,
        attention_dropout=0.0,
        activation_dropout=0.0,
        pad_token_id=encodec_vocab_size,
        eos_token_id=encodec_vocab_size,
        bos_token_id=encodec_vocab_size + 1,
        num_codebooks=num_codebooks,
    )

    decoder = ParlerTTSForCausalLM(decoder_config)
    decoder.save_pretrained(os.path.join(args.save_directory, "decoder"))

    model = ParlerTTSForConditionalGeneration.from_sub_models_pretrained(
        text_encoder_pretrained_model_name_or_path=text_model,
        audio_encoder_pretrained_model_name_or_path=encodec_version,
        decoder_pretrained_model_name_or_path=os.path.join(args.save_directory, "decoder"),
        vocab_size=t5.vocab_size,
    )

    # set the appropriate bos/pad token ids
    model.generation_config.decoder_start_token_id = encodec_vocab_size + 1
    model.generation_config.pad_token_id = encodec_vocab_size
    model.generation_config.eos_token_id = encodec_vocab_size

    # set other default generation config params
    model.generation_config.max_length = int(30 * model.audio_encoder.config.frame_rate)
    model.generation_config.do_sample = True  # True
    model.generation_config.guidance_scale = 1  # 3.0
65

66
    model.config.pad_token_id = encodec_vocab_size
67
    model.config.decoder_start_token_id = encodec_vocab_size + 1
Yoach Lacombe's avatar
Yoach Lacombe committed
68
69

    model.save_pretrained(os.path.join(args.save_directory, "tiny-model"))