configuration.py 10.5 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
# coding=utf-8
2
# Copyright 2024 and The HuggingFace Inc. team. All rights reserved.
sanchit-gandhi's avatar
sanchit-gandhi committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yoach Lacombe's avatar
Yoach Lacombe committed
15
""" Parler-TTS model configuration"""
sanchit-gandhi's avatar
sanchit-gandhi committed
16
17

from transformers import AutoConfig, logging
sanchit-gandhi's avatar
style  
sanchit-gandhi committed
18
from transformers.configuration_utils import PretrainedConfig
sanchit-gandhi's avatar
sanchit-gandhi committed
19
20
21
22
23


logger = logging.get_logger(__name__)

MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
Yoach Lacombe's avatar
Yoach Lacombe committed
24
25
    "facebook/parler_tts-small": "https://huggingface.co/facebook/parler_tts-small/resolve/main/config.json",
    # See all ParlerTTS models at https://huggingface.co/models?filter=parler_tts
sanchit-gandhi's avatar
sanchit-gandhi committed
26
27
28
}


Yoach Lacombe's avatar
Yoach Lacombe committed
29
class ParlerTTSDecoderConfig(PretrainedConfig):
sanchit-gandhi's avatar
sanchit-gandhi committed
30
    r"""
Yoach Lacombe's avatar
Yoach Lacombe committed
31
32
33
34
    This is the configuration class to store the configuration of an [`ParlerTTSDecoder`]. It is used to instantiate a
    Parler-TTS decoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Parler-TTS
    [facebook/parler_tts-small](https://huggingface.co/facebook/parler_tts-small) architecture.
sanchit-gandhi's avatar
sanchit-gandhi committed
35
36
37
38
39
40

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
41
        vocab_size (`int`, *optional*, defaults to 2049):
Yoach Lacombe's avatar
Yoach Lacombe committed
42
            Vocabulary size of the ParlerTTSDecoder model. Defines the number of different tokens that can be
Yoach Lacombe's avatar
Yoach Lacombe committed
43
            represented by the `inputs_ids` passed when calling [`ParlerTTSDecoder`]. 
sanchit-gandhi's avatar
sanchit-gandhi committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of decoder layers.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer block.
        ffn_dim (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically, set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_factor (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        scale_embedding (`bool`, *optional*, defaults to `False`):
            Scale embeddings by diving by sqrt(hidden_size).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether the model should return the last key/values attentions (not used by all models)
        num_codebooks (`int`, *optional*, defaults to 4):
            The number of parallel codebooks forwarded to the model.
        tie_word_embeddings(`bool`, *optional*, defaults to `False`):
            Whether input and output word embeddings should be tied.
    """

Yoach Lacombe's avatar
Yoach Lacombe committed
79
    model_type = "parler_tts_decoder"
sanchit-gandhi's avatar
sanchit-gandhi committed
80
81
82
83
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
Yoach Lacombe's avatar
Yoach Lacombe committed
84
        vocab_size=2049,  # vocab size = 2048 (encodec vocab size) + 1 (eos)
sanchit-gandhi's avatar
sanchit-gandhi committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        max_position_embeddings=2048,
        num_hidden_layers=24,
        ffn_dim=4096,
        num_attention_heads=16,
        layerdrop=0.0,
        use_cache=True,
        activation_function="gelu",
        hidden_size=1024,
        dropout=0.1,
        attention_dropout=0.0,
        activation_dropout=0.0,
        initializer_factor=0.02,
        scale_embedding=False,
        num_codebooks=4,
99
100
101
        pad_token_id=2048,
        bos_token_id=2049,
        eos_token_id=2048,
sanchit-gandhi's avatar
sanchit-gandhi committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        tie_word_embeddings=False,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.ffn_dim = ffn_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.initializer_factor = initializer_factor
        self.layerdrop = layerdrop
        self.use_cache = use_cache
        self.scale_embedding = scale_embedding  # scale factor will be sqrt(d_model) if True
        self.num_codebooks = num_codebooks

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


Yoach Lacombe's avatar
Yoach Lacombe committed
130
class ParlerTTSConfig(PretrainedConfig):
sanchit-gandhi's avatar
sanchit-gandhi committed
131
    r"""
Yoach Lacombe's avatar
Yoach Lacombe committed
132
133
    This is the configuration class to store the configuration of a [`ParlerTTSModel`]. It is used to instantiate a
    Parler-TTS model according to the specified arguments, defining the text encoder, audio encoder and Parler-TTS decoder
sanchit-gandhi's avatar
sanchit-gandhi committed
134
135
136
137
138
139
    configs.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
Yoach Lacombe's avatar
Yoach Lacombe committed
140
        vocab_size (`int`, *optional*, defaults to 1024):
Yoach Lacombe's avatar
Yoach Lacombe committed
141
142
            Vocabulary size of the prompt token ids. Defines the number of different tokens that can be
            represented by the `prompt_inputs_ids`.
sanchit-gandhi's avatar
sanchit-gandhi committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        kwargs (*optional*):
            Dictionary of keyword arguments. Notably:

                - **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
                  defines the text encoder config.
                - **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
                  defines the audio encoder config.
                - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
                  the decoder config.

    Example:

    ```python
    >>> from transformers import (
Yoach Lacombe's avatar
Yoach Lacombe committed
157
158
    ...     ParlerTTSConfig,
    ...     ParlerTTSDecoderConfig,
sanchit-gandhi's avatar
sanchit-gandhi committed
159
160
    ...     T5Config,
    ...     EncodecConfig,
Yoach Lacombe's avatar
Yoach Lacombe committed
161
    ...     ParlerTTSForConditionalGeneration,
sanchit-gandhi's avatar
sanchit-gandhi committed
162
163
164
165
166
    ... )

    >>> # Initializing text encoder, audio encoder, and decoder model configurations
    >>> text_encoder_config = T5Config()
    >>> audio_encoder_config = EncodecConfig()
Yoach Lacombe's avatar
Yoach Lacombe committed
167
    >>> decoder_config = ParlerTTSDecoderConfig()
sanchit-gandhi's avatar
sanchit-gandhi committed
168

Yoach Lacombe's avatar
Yoach Lacombe committed
169
    >>> configuration = ParlerTTSConfig.from_sub_models_config(
sanchit-gandhi's avatar
sanchit-gandhi committed
170
171
172
    ...     text_encoder_config, audio_encoder_config, decoder_config
    ... )

Yoach Lacombe's avatar
Yoach Lacombe committed
173
174
    >>> # Initializing a ParlerTTSForConditionalGeneration (with random weights) from the facebook/parler_tts-small style configuration
    >>> model = ParlerTTSForConditionalGeneration(configuration)
sanchit-gandhi's avatar
sanchit-gandhi committed
175
176
177
178
179
180
181
182

    >>> # Accessing the model configuration
    >>> configuration = model.config
    >>> config_text_encoder = model.config.text_encoder
    >>> config_audio_encoder = model.config.audio_encoder
    >>> config_decoder = model.config.decoder

    >>> # Saving the model, including its configuration
Yoach Lacombe's avatar
Yoach Lacombe committed
183
    >>> model.save_pretrained("parler_tts-model")
sanchit-gandhi's avatar
sanchit-gandhi committed
184
185

    >>> # loading model and config from pretrained folder
Yoach Lacombe's avatar
Yoach Lacombe committed
186
187
    >>> parler_tts_config = ParlerTTSConfig.from_pretrained("parler_tts-model")
    >>> model = ParlerTTSForConditionalGeneration.from_pretrained("parler_tts-model", config=parler_tts_config)
sanchit-gandhi's avatar
sanchit-gandhi committed
188
189
    ```"""

Yoach Lacombe's avatar
Yoach Lacombe committed
190
    model_type = "parler_tts"
sanchit-gandhi's avatar
sanchit-gandhi committed
191
192
    is_composition = True

Yoach Lacombe's avatar
Yoach Lacombe committed
193
    def __init__(self, vocab_size=1024, **kwargs):
sanchit-gandhi's avatar
sanchit-gandhi committed
194
195
196
197
198
199
200
201
202
203
204
205
        super().__init__(**kwargs)
        if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
            raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")

        text_encoder_config = kwargs.pop("text_encoder")
        text_encoder_model_type = text_encoder_config.pop("model_type")

        audio_encoder_config = kwargs.pop("audio_encoder")
        audio_encoder_model_type = audio_encoder_config.pop("model_type")

        decoder_config = kwargs.pop("decoder")

Yoach Lacombe's avatar
Yoach Lacombe committed
206
        self.vocab_size = vocab_size
sanchit-gandhi's avatar
sanchit-gandhi committed
207
208
        self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
        self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
Yoach Lacombe's avatar
Yoach Lacombe committed
209
        self.decoder = ParlerTTSDecoderConfig(**decoder_config)
sanchit-gandhi's avatar
sanchit-gandhi committed
210
211
212
213
214
215
216
        self.is_encoder_decoder = True

    @classmethod
    def from_sub_models_config(
        cls,
        text_encoder_config: PretrainedConfig,
        audio_encoder_config: PretrainedConfig,
Yoach Lacombe's avatar
Yoach Lacombe committed
217
        decoder_config: ParlerTTSDecoderConfig,
sanchit-gandhi's avatar
sanchit-gandhi committed
218
219
220
        **kwargs,
    ):
        r"""
Yoach Lacombe's avatar
Yoach Lacombe committed
221
        Instantiate a [`ParlerTTSConfig`] (or a derived class) from text encoder, audio encoder and decoder
sanchit-gandhi's avatar
sanchit-gandhi committed
222
223
224
        configurations.

        Returns:
Yoach Lacombe's avatar
Yoach Lacombe committed
225
            [`ParlerTTSConfig`]: An instance of a configuration object
sanchit-gandhi's avatar
sanchit-gandhi committed
226
227
228
229
230
231
232
233
234
235
236
237
238
        """

        return cls(
            text_encoder=text_encoder_config.to_dict(),
            audio_encoder=audio_encoder_config.to_dict(),
            decoder=decoder_config.to_dict(),
            **kwargs,
        )

    @property
    # This is a property because you might want to change the codec model on the fly
    def sampling_rate(self):
        return self.audio_encoder.sampling_rate