run_parler_tts_training.py 76.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Yoach Lacombe's avatar
Yoach Lacombe committed
17
""" Train Parler-TTS using 🤗 Accelerate"""
18
19
20
21
22

import logging
import os
import re
import sys
Yoach Lacombe's avatar
Yoach Lacombe committed
23
24
import shutil
import time
25
from multiprocess import set_start_method
26
from datetime import timedelta
27

28

Yoach Lacombe's avatar
Yoach Lacombe committed
29
import evaluate
30
from tqdm import tqdm
Yoach Lacombe's avatar
Yoach Lacombe committed
31
from pathlib import Path
32
from dataclasses import dataclass, field
Yoach Lacombe's avatar
Yoach Lacombe committed
33
from typing import Dict, List, Optional, Union, Set
34
35
36
37

import datasets
import numpy as np
import torch
38
39
from torch.utils.data import DataLoader

40
41
from datasets import DatasetDict, load_dataset, Dataset, IterableDataset, interleave_datasets, concatenate_datasets

Yoach Lacombe's avatar
Yoach Lacombe committed
42
from huggingface_hub import Repository, create_repo
43
44
45
46
47
48
49
50
51
import transformers
from transformers import (
    AutoFeatureExtractor,
    AutoModel,
    AutoProcessor,
    AutoTokenizer,
    HfArgumentParser,
    Seq2SeqTrainingArguments,
)
Yoach Lacombe's avatar
Yoach Lacombe committed
52
from transformers.trainer_pt_utils import LengthGroupedSampler
Yoach Lacombe's avatar
Yoach Lacombe committed
53
54
from transformers import pipeline
from transformers.optimization import get_scheduler
Yoach Lacombe's avatar
Yoach Lacombe committed
55
from transformers.utils import send_example_telemetry
Yoach Lacombe's avatar
Yoach Lacombe committed
56
from transformers import AutoModel
Yoach Lacombe's avatar
add DAC  
Yoach Lacombe committed
57

58
59

from accelerate import Accelerator
60
from accelerate.utils import set_seed, AutocastKwargs, InitProcessGroupKwargs, TorchDynamoPlugin
Yoach Lacombe's avatar
Yoach Lacombe committed
61
from accelerate.utils.memory import release_memory
62

Yoach Lacombe's avatar
Yoach Lacombe committed
63
64
65
66
67
from parler_tts import (
    ParlerTTSForConditionalGeneration,
    ParlerTTSConfig,
    build_delay_pattern_mask,
)
68

Yoach Lacombe's avatar
Yoach Lacombe committed
69
from wandb import Audio
70
71
72
73
74
75
76
77


logger = logging.getLogger(__name__)


def list_field(default=None, metadata=None):
    return field(default_factory=lambda: default, metadata=metadata)

Yoach Lacombe's avatar
Yoach Lacombe committed
78

Yoach Lacombe's avatar
Yoach Lacombe committed
79
80
_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")

Yoach Lacombe's avatar
Yoach Lacombe committed
81

Yoach Lacombe's avatar
Yoach Lacombe committed
82
83
84
85
86
87
88
89
90
91
92
def get_last_checkpoint(folder):
    content = os.listdir(folder)
    checkpoints = [
        path
        for path in content
        if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
    ]
    if len(checkpoints) == 0:
        return
    return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))

Yoach Lacombe's avatar
Yoach Lacombe committed
93

Yoach Lacombe's avatar
Yoach Lacombe committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
    """Helper function to sort saved checkpoints from oldest to newest."""
    ordering_and_checkpoint_path = []

    glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]

    for path in glob_checkpoints:
        regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
        if regex_match is not None and regex_match.groups() is not None:
            ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
    return checkpoints_sorted

Yoach Lacombe's avatar
Yoach Lacombe committed
109

Yoach Lacombe's avatar
Yoach Lacombe committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None:
    """Helper function to delete old checkpoints."""
    if save_total_limit is None or save_total_limit <= 0:
        return
    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
    if len(checkpoints_sorted) <= save_total_limit:
        return

    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
        shutil.rmtree(checkpoint, ignore_errors=True)

Yoach Lacombe's avatar
Yoach Lacombe committed
125

Yoach Lacombe's avatar
Yoach Lacombe committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def log_metric(
    accelerator,
    metrics: Dict,
    train_time: float,
    step: int,
    epoch: int,
    learning_rate: float = None,
    prefix: str = "train",
):
    """Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
    log_metrics = {}
    for k, v in metrics.items():
        log_metrics[f"{prefix}/{k}"] = v
    log_metrics[f"{prefix}/time"] = train_time
    log_metrics[f"{prefix}/epoch"] = epoch
    if learning_rate is not None:
        log_metrics[f"{prefix}/learning_rate"] = learning_rate
    accelerator.log(log_metrics, step=step)

Yoach Lacombe's avatar
Yoach Lacombe committed
145

Yoach Lacombe's avatar
Yoach Lacombe committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def log_pred(
    accelerator,
    pred_descriptions: List[str],
    pred_prompts: List[str],
    transcriptions: List[str],
    audios: List[torch.Tensor],
    sampling_rate: int,
    step: int,
    prefix: str = "eval",
    num_lines: int = 200000,
):
    """Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
    if accelerator.is_main_process:
        wandb_tracker = accelerator.get_tracker("wandb")
        # pretty name for current step: step 50000 -> step 50k
        cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step
        prefix_pretty = prefix.replace("/", "-")

        # convert str data to a wandb compatible format
        str_data = [[pred_descriptions[i], pred_prompts[i], transcriptions[i]] for i in range(len(pred_descriptions))]
        # log as a table with the appropriate headers
        wandb_tracker.log_table(
            table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
            columns=["Target descriptions", "Target prompts", "Predicted transcriptions"],
            data=str_data[:num_lines],
            step=step,
            commit=False,
        )
Yoach Lacombe's avatar
Yoach Lacombe committed
174

Yoach Lacombe's avatar
Yoach Lacombe committed
175
        # wandb can only loads 100 audios per step
Yoach Lacombe's avatar
Yoach Lacombe committed
176
177
        wandb_tracker.log(
            {
Yoach Lacombe's avatar
Yoach Lacombe committed
178
179
180
181
182
183
                "Speech samples": [
                    Audio(
                        audio,
                        caption=f"{pred_prompts[i]} --- DESCRIPTION: {pred_descriptions[i]}",
                        sample_rate=sampling_rate,
                    )
Yoach Lacombe's avatar
Yoach Lacombe committed
184
185
186
187
188
189
                    for (i, audio) in enumerate(audios[: min(len(audios), 100)])
                ]
            },
            step=step,
        )

190
191
192
193
194
195

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
Yoach Lacombe's avatar
Yoach Lacombe committed
196

197
198
199
200
201
202
203
204
205
206
207
208
209
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained feature extractor name or path if not the same as model_name"}
    )
    description_tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained description tokenizer name or path if not the same as model_name"}
    )
    prompt_tokenizer_name: Optional[str] = field(
Yoach Lacombe's avatar
Yoach Lacombe committed
210
211
        default=None,
        metadata={"help": "Pretrained prompt tokenizer name or path if not the same as description_tokenizer_name"},
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    pad_token_id: int = field(
        default=None,
        metadata={"help": "If specified, change the model pad token id."},
    )
    decoder_start_token_id: int = field(
        default=None,
        metadata={"help": "If specified, change the model decoder start token id."},
    )
    freeze_text_encoder: bool = field(
        default=False,
        metadata={"help": "Whether to freeze the text encoder."},
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
237
    do_sample: bool = field(
238
        default=True,
Yoach Lacombe's avatar
Yoach Lacombe committed
239
240
        metadata={"help": "Whether to do sampling or greedy decoding."},
    )
yoach@huggingface.co's avatar
yoach@huggingface.co committed
241
    temperature: float = field(
242
        default=1.0,
yoach@huggingface.co's avatar
yoach@huggingface.co committed
243
244
        metadata={"help": "Temperature if sampling."},
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
245
    max_length: int = field(
246
247
        default=2580,
        metadata={"help": "Generation max length."},
Yoach Lacombe's avatar
Yoach Lacombe committed
248
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
249
    bandwidth: float = field(
Yoach Lacombe's avatar
Yoach Lacombe committed
250
        default=6,
Yoach Lacombe's avatar
Yoach Lacombe committed
251
252
        metadata={"help": "Audio encoder bandwidth."},
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
253
254
255
256
257
258
259
260
261
    asr_model_name_or_path: str = field(
        default="distil-whisper/distil-large-v2",
        metadata={"help": "Used to compute WER during evaluation. Path to pretrained model or model identifier from huggingface.co/models"}
    )
    clap_model_name_or_path: str = field(
        default="laion/larger_clap_music_and_speech",
        metadata={"help": "Used to compute audio similarity during evaluation. Path to pretrained model or model identifier from huggingface.co/models"}
    )

262
263
264


@dataclass
Yoach Lacombe's avatar
Yoach Lacombe committed
265
class DataTrainingArguments:
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol."
        },
    )
    train_split_name: str = field(
        default="train",
        metadata={
            "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
        },
    )
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in the training data. Load and combine "
            "multiple datasets by separating dataset samples by a '+' symbol."
        },
    )
    train_metadata_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
    eval_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
        },
    )
    eval_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
        },
    )
    eval_split_name: str = field(
        default="test",
        metadata={
            "help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
        },
    )
    eval_metadata_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
336
    target_audio_column_name: str = field(
337
338
339
        default="audio",
        metadata={"help": "The name of the dataset column containing the target audio data. Defaults to 'audio'"},
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
340
    description_column_name: str = field(
341
        default=None,
Yoach Lacombe's avatar
Yoach Lacombe committed
342
        metadata={"help": "The name of the dataset column containing the description text data. Defaults to 'None'."},
343
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
344
    prompt_column_name: str = field(
345
        default=None,
Yoach Lacombe's avatar
Yoach Lacombe committed
346
        metadata={"help": "The name of the dataset column containing the prompt text data. Defaults to 'None'."},
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of validation examples to this "
                "value if set."
            )
        },
    )
    max_duration_in_seconds: float = field(
        default=35.0,
        metadata={
            "help": (
377
378
                "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`."
                "Also, used to set maximum audio length if `pad_to_max_length=True`."
379
380
381
382
383
384
            )
        },
    )
    min_duration_in_seconds: float = field(
        default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
    )
385
    max_text_length: int = field(
386
387
388
        default=500, metadata={"help": "If set, max description lengths in number of characters."}
    )
    max_prompt_token_length: int = field(
Yoach Lacombe's avatar
Yoach Lacombe committed
389
390
        default=None,
        metadata={
391
392
393
394
            "help": (
                "If set, filter samples with prompts that are longer than `max_prompt_token_length` tokens."
                "Also, used to set maximum prompt token length if `pad_to_max_length=True`."
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
395
        },
396
397
    )
    max_description_token_length: int = field(
Yoach Lacombe's avatar
Yoach Lacombe committed
398
399
        default=None,
        metadata={
400
401
402
403
            "help": (
                "If set, filter samples with descriptions that are longer than `max_description_token_length` tokens."
                "Also, used to set maximum desription token length if `pad_to_max_length=True`."
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
404
        },
405
406
    )
    pad_to_max_length: bool = field(
Yoach Lacombe's avatar
Yoach Lacombe committed
407
408
409
410
411
412
413
        default=False,
        metadata={
            "help": (
                "If `True`, pad audio, prompt and description to a maximum length set with respectively "
                "`max_duration_in_seconds`, `max_prompt_token_length`, `max_description_token_length`."
            )
        },
414
    )
415
416
417
418
419
420
421
    preprocessing_only: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to only do data preprocessing and skip training. This is especially useful when data"
                " preprocessing errors out in distributed training due to timeout. In this case, one should run the"
                " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
422
423
                " can consequently be loaded in distributed training."
                " In this training script, `save_to_disk` must be set to the path in which the dataset should be saved. "
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
            )
        },
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    add_audio_samples_to_wandb: bool = field(
        default=False,
Yoach Lacombe's avatar
Yoach Lacombe committed
454
        metadata={"help": "If set and if `wandb` in args.report_to, will add generated audio samples to wandb logs."},
455
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
456
    id_column_name: str = field(default=None, metadata={"help": "id column name."})
Yoach Lacombe's avatar
Yoach Lacombe committed
457
    wandb_project: str = field(
Yoach Lacombe's avatar
Yoach Lacombe committed
458
        default="parler-speech",
Yoach Lacombe's avatar
Yoach Lacombe committed
459
460
        metadata={"help": "The name of the wandb project."},
    )
461
462
463
464
    save_to_disk: str = field(
        default=None,
        metadata={
            "help": "If set, will save the dataset to this path if this is an empyt folder. If not empty, will load the datasets from it."
Yoach Lacombe's avatar
Yoach Lacombe committed
465
        },
466
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
467
    temporary_save_to_disk: str = field(default=None, metadata={"help": "Temporarily save audio labels here."})
468
469
    pad_to_multiple_of: Optional[int] = field(
        default=2,
Yoach Lacombe's avatar
Yoach Lacombe committed
470
        metadata={"help": ("Pad to multiple of for tokenizers.")},
471
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
472
473


Yoach Lacombe's avatar
Yoach Lacombe committed
474
@dataclass
Yoach Lacombe's avatar
Yoach Lacombe committed
475
class ParlerTTSTrainingArguments(Seq2SeqTrainingArguments):
Yoach Lacombe's avatar
Yoach Lacombe committed
476
477
478
479
480
481
482
483
484
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": (
                "The data type (dtype) in which to run training. One of `float32` (full-precision), "
                "`float16` or `bfloat16` (both half-precision)."
            )
        },
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
485
    audio_encoder_per_device_batch_size: int = field(
Yoach Lacombe's avatar
Yoach Lacombe committed
486
        default=8,
Yoach Lacombe's avatar
Yoach Lacombe committed
487
        metadata={"help": ("Specify the batch size of the audio encoding pre-processing steps.")},
Yoach Lacombe's avatar
Yoach Lacombe committed
488
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
489

Yoach Lacombe's avatar
Yoach Lacombe committed
490

491
492
493
@dataclass
class DataCollatorEncodecWithPadding:
    """
Yoach Lacombe's avatar
Yoach Lacombe committed
494
    Data collator that will dynamically pad the inputs received to the longest sequence in the batch or
495
    to `max_length` if `max_length` is set and `padding=max_length`.
496
497
498
    """

    feature_extractor: AutoFeatureExtractor
499
    audio_column_name: str
500
    feature_extractor_input_name: Optional[str] = "input_values"
501
    max_length: Optional[int] = None
502
    padding: Optional[str] = "longest"
503
504
505
506

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
Yoach Lacombe's avatar
Yoach Lacombe committed
507
        audios = [feature[self.audio_column_name]["array"] for feature in features]
508
        len_audio = [len(audio) for audio in audios]
509
510

        batch = self.feature_extractor(audios, return_tensors="pt", padding=self.padding, max_length=self.max_length)
511
512
        batch["len_audio"] = torch.tensor(len_audio).unsqueeze(1)
        return batch
513

Yoach Lacombe's avatar
Yoach Lacombe committed
514

515
@dataclass
Yoach Lacombe's avatar
Yoach Lacombe committed
516
class DataCollatorParlerTTSWithPadding:
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        prompt_tokenizer (:class:`~transformers.AutoTokenizer`)
            The prompt_tokenizer used for proccessing the data.
        description_tokenizer (:class:`~transformers.AutoTokenizer`)
            The description_tokenizer used for proccessing the data.
        padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        pad_to_multiple_of (:obj:`int`, `optional`):
            If set will pad the sequence to a multiple of the provided value.
            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
            7.5 (Volta).
    """

    prompt_tokenizer: AutoTokenizer
    description_tokenizer: AutoTokenizer
    padding: Union[bool, str] = "longest"
    pad_to_multiple_of: Optional[int] = None
543
544
545
    prompt_max_length: Optional[int] = None
    description_max_length: Optional[int] = None
    audio_max_length: Optional[int] = None
546
547
548
549

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
Yoach Lacombe's avatar
Yoach Lacombe committed
550
551

        labels = [torch.tensor(feature["labels"]).transpose(0, 1) for feature in features]
552
        # (bsz, seq_len, num_codebooks)
Yoach Lacombe's avatar
Yoach Lacombe committed
553
554
555
556
        labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=-100)
        if self.audio_max_length is not None and self.padding == "max_length":
            labels = torch.nn.functional.pad(labels, pad=(0, 0, 0, max(self.audio_max_length - labels.shape[1], 0)))

557
        input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
558

Yoach Lacombe's avatar
Yoach Lacombe committed
559
560
561
562
563
564
565
566
567
568
569
        input_ids = self.description_tokenizer.pad(
            input_ids,
            return_tensors="pt",
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
            max_length=self.description_max_length,
        )

        batch = {"labels": labels, **input_ids}

        if self.audio_max_length is not None and self.padding == "max_length":
570
571
572
            # if we do torch.compile, we need to also specify the attention_mask
            decoder_attention_mask = torch.ones(labels.shape[:2], dtype=input_ids["attention_mask"].dtype)
            batch["decoder_attention_mask"] = decoder_attention_mask
Yoach Lacombe's avatar
Yoach Lacombe committed
573

574
        prompt_input_ids = [{"input_ids": feature["prompt_input_ids"]} for feature in features]
Yoach Lacombe's avatar
Yoach Lacombe committed
575
576
577
578
579
580
581
582
        prompt_input_ids = self.prompt_tokenizer.pad(
            prompt_input_ids,
            return_tensors="pt",
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
            max_length=self.prompt_max_length,
        )

583
584
585
        batch["prompt_input_ids"] = prompt_input_ids["input_ids"]
        if "attention_mask" in prompt_input_ids:
            batch["prompt_attention_mask"] = prompt_input_ids["attention_mask"]
Yoach Lacombe's avatar
Yoach Lacombe committed
586

587
        return batch
588

Yoach Lacombe's avatar
Yoach Lacombe committed
589

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    metadata_dataset_names=None,
    splits=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
        metadata_dataset_names = metadata_dataset_names.split("+") if metadata_dataset_names is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if metadata_dataset_names is not None and len(metadata_dataset_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one metadata dataset is passed for each dataset, got {len(dataset_names)} datasets and {len(metadata_dataset_names)} metadata datasets."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "metadata_dataset_name": metadata_dataset_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
649
    accelerator: Accelerator,
650
651
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
Yoach Lacombe's avatar
Yoach Lacombe committed
652
    metadata_dataset_names: Optional[str] = None,
653
654
655
656
657
658
659
    splits: Optional[Union[List, str]] = None,
    label_column_names: Optional[List] = None,
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
    streaming: Optional[bool] = False,
    seed: Optional[int] = None,
    id_column_name: Optional[str] = None,
Yoach Lacombe's avatar
Yoach Lacombe committed
660
    columns_to_keep: Optional[Set[str]] = None,
661
    prompt_column_name: Optional[str] = None,
662
663
    sampling_rate: Optional[int] = None,
    audio_column_name: Optional[str] = None,
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    **kwargs,
) -> Union[Dataset, IterableDataset]:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, metadata_dataset_names, splits, label_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
679
680
681
        with accelerator.main_process_first():
            dataset = load_dataset(
                dataset_dict["name"],
682
683
684
685
686
                dataset_dict["config"],
                split=dataset_dict["split"],
                streaming=streaming,
                **kwargs,
            )
687
            dataset_features = dataset.features.keys()
Yoach Lacombe's avatar
Yoach Lacombe committed
688

689
690
            if sampling_rate is not None and audio_column_name is not None:
                # resample target audio
Yoach Lacombe's avatar
Yoach Lacombe committed
691
692
                dataset = dataset.cast_column(audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate))

693
694
            metadata_dataset_name = dataset_dict["metadata_dataset_name"]
            if metadata_dataset_name is not None:
Yoach Lacombe's avatar
Yoach Lacombe committed
695
696
697
                logger.info(
                    f'Merging {dataset_dict["name"]} - {dataset_dict["split"]} with {metadata_dataset_name} - {dataset_dict["split"]}'
                )
698
699
700
701
702
703
704
                metadata_dataset = load_dataset(
                    metadata_dataset_name,
                    dataset_dict["config"],
                    split=dataset_dict["split"],
                    streaming=streaming,
                    **kwargs,
                )
Yoach Lacombe's avatar
Yoach Lacombe committed
705

706
                # TODO(YL): I forgot to create unique ids for MLS english.
707
                # To iterate faster, I bypass the original id check and do another one. - Done once because assuming it won't change next time
Yoach Lacombe's avatar
Yoach Lacombe committed
708
                # if dataset_dict["name"] == "parler-tts/mls_eng_10k":
709
710
711
712
713
714
                #     def concat_ids(book_id, speaker_id, begin_time):
                #         return {"id": f"{book_id}_{speaker_id}_{str(begin_time).replace('.', '_')}"}
                #     dataset = dataset.map(concat_ids, input_columns=["book_id", "speaker_id", "begin_time"], num_proc=24)
                #     metadata_dataset = metadata_dataset.map(concat_ids, input_columns=["book_id", "speaker_id", "begin_time"], num_proc=24)
                #     metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")

Yoach Lacombe's avatar
Yoach Lacombe committed
715
                if dataset_dict["name"] != "parler-tts/mls_eng_10k":
716
717
718
719
                    if id_column_name is not None and id_column_name not in dataset.column_names:
                        raise ValueError(
                            f"id_column_name={id_column_name} but has not been found in the dataset columns"
                            f"- one of {', '.join(list(dataset.column_names))}."
Yoach Lacombe's avatar
Yoach Lacombe committed
720
                        )
721
722
723
724
                    if id_column_name is not None and id_column_name not in metadata_dataset.column_names:
                        raise ValueError(
                            f"id_column_name={id_column_name} but has not been found in the metadata dataset columns"
                            f"- one of {', '.join(list(metadata_dataset.column_names))}."
Yoach Lacombe's avatar
Yoach Lacombe committed
725
                        )
726
727
                    elif id_column_name is not None:
                        metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")
Yoach Lacombe's avatar
Yoach Lacombe committed
728

729
                metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names))
Yoach Lacombe's avatar
Yoach Lacombe committed
730

731
732
733
734
                if prompt_column_name is not None:
                    # We might have applied some transformations to the prompts (e.g  punctuation restoration)
                    # so we make sure to remove it from the original dataset
                    if prompt_column_name in dataset.column_names:
Yoach Lacombe's avatar
Yoach Lacombe committed
735
736
737
                        logger.info(
                            f"REMOVE {prompt_column_name} from dataset {dataset_dict['name']} - dataset_dict['split']"
                        )
738
739
                        dataset.remove_columns(prompt_column_name)

740
741
                metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names))
                metadata_dataset = metadata_dataset.remove_columns(metadata_columns_to_remove)
742

743
                dataset = concatenate_datasets([dataset, metadata_dataset], axis=1)
Yoach Lacombe's avatar
Yoach Lacombe committed
744

Yoach Lacombe's avatar
Yoach Lacombe committed
745
                if id_column_name is not None and dataset_dict["name"] != "parler-tts/mls_eng_10k":
Yoach Lacombe's avatar
Yoach Lacombe committed
746
747
748
749
750
751
752
753
754
755
756
757
                    if (
                        len(
                            dataset.filter(
                                lambda id1, id2: id1 != id2,
                                input_columns=[id_column_name, f"metadata_{id_column_name}"],
                            )
                        )
                        != 0
                    ):
                        raise ValueError(
                            f"Concatenate didn't work. Some ids don't correspond on dataset {dataset_dict['name']}"
                        )
758

759
                dataset_features = dataset.features.keys()
Yoach Lacombe's avatar
Yoach Lacombe committed
760

761
762
            if columns_to_keep is not None:
                dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
763
764
765
766
767
768
769
770
771
772
773
774
775
776
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
777
778
        with accelerator.main_process_first():
            interleaved_dataset = concatenate_datasets(all_datasets)
779
780
781

    return interleaved_dataset

Yoach Lacombe's avatar
Yoach Lacombe committed
782

783
784
785
786
787
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

Yoach Lacombe's avatar
Yoach Lacombe committed
788
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, ParlerTTSTrainingArguments))
789
790
791
792
793
794
795
796
797
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
Yoach Lacombe's avatar
Yoach Lacombe committed
798
    send_example_telemetry("run_parler_tts", model_args, data_args)
Yoach Lacombe's avatar
Yoach Lacombe committed
799

Yoach Lacombe's avatar
Yoach Lacombe committed
800
801
802
803
804
805
    if training_args.dtype == "float16":
        mixed_precision = "fp16"
    elif training_args.dtype == "bfloat16":
        mixed_precision = "bf16"
    else:
        mixed_precision = "no"
Yoach Lacombe's avatar
Yoach Lacombe committed
806
807
808
809
810
811
812
813
814

    if data_args.pad_to_max_length and (
        data_args.max_duration_in_seconds is None
        or data_args.max_prompt_token_length is None
        or data_args.max_description_token_length is None
    ):
        raise ValueError(
            "`pad_to_max_length` is `True` but one of the following parameters has not been set: `max_duration_in_seconds`, `max_prompt_token_length`, `max_description_token_length`"
        )
815
816

    padding = "max_length" if data_args.pad_to_max_length else "longest"
817

818
    ####### A. Preparation
819
820
821
    kwargs_handlers = [InitProcessGroupKwargs(timeout=timedelta(minutes=60))]
    if training_args.torch_compile:
        # TODO(YL): add more compile modes?
Yoach Lacombe's avatar
Yoach Lacombe committed
822
823
        kwargs_handlers.append(TorchDynamoPlugin(backend="inductor", mode="default"))  # reduce-overhead

Yoach Lacombe's avatar
Yoach Lacombe committed
824
825
826
827
828
    accelerator = Accelerator(
        gradient_accumulation_steps=training_args.gradient_accumulation_steps,
        mixed_precision=mixed_precision,
        log_with=training_args.report_to,
        project_dir=training_args.output_dir,
829
        kwargs_handlers=kwargs_handlers,
Yoach Lacombe's avatar
Yoach Lacombe committed
830
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

    accelerator.init_trackers(
        project_name=data_args.wandb_project,
        config={
            "learning_rate": training_args.learning_rate,
            "model_name_or_path": model_args.model_name_or_path,
            "num_train_epochs": training_args.num_train_epochs,
            "gradient_accumulation_steps": training_args.gradient_accumulation_steps,
            "per_device_train_batch_size": training_args.per_device_train_batch_size,
            "global_batch_size": training_args.per_device_train_batch_size * accelerator.num_processes,
            "mixed_precision": mixed_precision,
            "lr_scheduler_type": training_args.lr_scheduler_type,
            "warmup_steps": training_args.warmup_steps,
            "freeze_text_encoder": model_args.freeze_text_encoder,
            "max_duration_in_seconds": data_args.max_duration_in_seconds,
            "weight_decay": training_args.weight_decay,
            "adam_beta1": training_args.adam_beta1,
            "adam_beta2": training_args.adam_beta2,
            "temperature": model_args.temperature,
        },
    )

Yoach Lacombe's avatar
Yoach Lacombe committed
853
    # Detecting last checkpoint and eventually continue from last checkpoint
854
855
856
857
858
859
860
861
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
862
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
863
864
865
866
867
868
869
870
871
872
873
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
874
    logger.setLevel(logging.INFO if accelerator.is_main_process else logging.WARN)
875

Yoach Lacombe's avatar
Yoach Lacombe committed
876
    # Log a small summary on each proces
877
878
879
880
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
881
882
883
884

    # Set the verbosity to info of the Transformers logger (on main process only)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
885
        transformers.utils.logging.set_verbosity_info()
Yoach Lacombe's avatar
Yoach Lacombe committed
886
887
888
889
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

890
891
892
893
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)
894
    num_workers = data_args.preprocessing_num_workers
Yoach Lacombe's avatar
Yoach Lacombe committed
895

896
897
898
    # 1. First, lett's instantiate the feature extractor, tokenizers and model
    # Note for distributed training, the .from_pretrained methods guarantee that only
    # one local process can concurrently download model & vocab.
Yoach Lacombe's avatar
Yoach Lacombe committed
899

900
901
902
903
904
905
906
907
    # load feature extractor
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
    sampling_rate = feature_extractor.sampling_rate
Yoach Lacombe's avatar
Yoach Lacombe committed
908

909
910
911
912
913
914
915
    # load prompt tokenizer
    prompt_tokenizer = AutoTokenizer.from_pretrained(
        model_args.prompt_tokenizer_name or model_args.description_tokenizer_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
        use_fast=model_args.use_fast_tokenizer,
Yoach Lacombe's avatar
Yoach Lacombe committed
916
        padding_side="left",  # prompt has to be padded on the left bc it's preprend to codebooks hidden states
917
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
918

919
920
921
922
923
924
925
926
    # load description tokenizer
    description_tokenizer = AutoTokenizer.from_pretrained(
        model_args.description_tokenizer_name or model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
        use_fast=model_args.use_fast_tokenizer,
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
927

928
    if model_args.use_fast_tokenizer:
Yoach Lacombe's avatar
Yoach Lacombe committed
929
930
931
        logger.warning(
            "Disabling fast tokenizer warning: https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py#L3231-L3235"
        )
932
933
        prompt_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
        description_tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
934

935
    # 2. Now, let's load the dataset
Yoach Lacombe's avatar
Yoach Lacombe committed
936

937
938
    if data_args.save_to_disk is not None:
        os.makedirs(data_args.save_to_disk, exist_ok=True)
Yoach Lacombe's avatar
Yoach Lacombe committed
939

940
941
942
943
    # assume that the dataset has been saved to `save_to_disk` if the latter is not empty
    dataset_was_precomputed = len(os.listdir(data_args.save_to_disk)) > 0
    if dataset_was_precomputed:
        vectorized_datasets = datasets.load_from_disk(data_args.save_to_disk)
Yoach Lacombe's avatar
Yoach Lacombe committed
944
    else:
945
946
947
948
        raw_datasets = DatasetDict()

        columns_to_keep = {
            "target_audio_column_name": data_args.target_audio_column_name,
Yoach Lacombe's avatar
Yoach Lacombe committed
949
            "prompt_column_name": data_args.prompt_column_name,
950
951
        }
        if data_args.description_column_name is not None:
952
            columns_to_keep["description_column_name"] = data_args.description_column_name
Yoach Lacombe's avatar
Yoach Lacombe committed
953

954
955
956
957
958
959
960
961
962
963
964
965
966
        if training_args.do_train:
            raw_datasets["train"] = load_multiple_datasets(
                accelerator,
                data_args.train_dataset_name,
                data_args.train_dataset_config_name,
                metadata_dataset_names=data_args.train_metadata_dataset_name,
                splits=data_args.train_split_name,
                dataset_samples=data_args.train_dataset_samples,
                seed=training_args.seed,
                cache_dir=model_args.cache_dir,
                num_proc=data_args.preprocessing_num_workers,
                id_column_name=data_args.id_column_name,
                columns_to_keep=columns_to_keep.values(),
967
                prompt_column_name=data_args.prompt_column_name,
968
969
                audio_column_name=data_args.target_audio_column_name,
                sampling_rate=sampling_rate,
970
971
                # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
972

973
974
975
976
977
978
            for key in columns_to_keep:
                if columns_to_keep[key] not in raw_datasets["train"].column_names:
                    raise ValueError(
                        f"--{key} '{columns_to_keep[key]}' not found in dataset '{data_args.train_dataset_name}'."
                        f" Make sure to set `--{key}` to the correct audio column - one of"
                        f" {', '.join(raw_datasets['train'].column_names)}."
Yoach Lacombe's avatar
Yoach Lacombe committed
979
                    )
980
981
982
983
984
985
986
987

            if data_args.max_train_samples is not None:
                raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))

        if training_args.do_eval:
            raw_datasets["eval"] = load_multiple_datasets(
                accelerator,
                data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
Yoach Lacombe's avatar
Yoach Lacombe committed
988
989
990
                data_args.eval_dataset_config_name
                if data_args.eval_dataset_config_name
                else data_args.train_dataset_config_name,
991
992
993
994
995
996
                metadata_dataset_names=data_args.eval_metadata_dataset_name,
                splits=data_args.eval_split_name,
                cache_dir=model_args.cache_dir,
                num_proc=data_args.preprocessing_num_workers,
                id_column_name=data_args.id_column_name,
                columns_to_keep=columns_to_keep.values(),
997
998
999
                prompt_column_name=data_args.prompt_column_name,
                audio_column_name=data_args.target_audio_column_name,
                sampling_rate=sampling_rate,
1000
1001
                # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
            )
1002

1003
            if data_args.max_eval_samples is not None:
Yoach Lacombe's avatar
Yoach Lacombe committed
1004
1005
1006
                raw_datasets["eval"] = (
                    raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
                )
1007

1008
    # 3. Next, let's load the config.
Yoach Lacombe's avatar
Yoach Lacombe committed
1009
    config = ParlerTTSConfig.from_pretrained(
1010
1011
1012
1013
1014
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
1015

1016
    # update pad token id and decoder_start_token_id
Yoach Lacombe's avatar
Yoach Lacombe committed
1017
1018
1019
1020
    config.update(
        {
            "pad_token_id": model_args.pad_token_id
            if model_args.pad_token_id is not None
1021
            else config.pad_token_id,
Yoach Lacombe's avatar
Yoach Lacombe committed
1022
1023
            "decoder_start_token_id": model_args.decoder_start_token_id
            if model_args.decoder_start_token_id is not None
1024
            else config.decoder_start_token_id,
Yoach Lacombe's avatar
Yoach Lacombe committed
1025
1026
1027
        }
    )

Yoach Lacombe's avatar
Yoach Lacombe committed
1028
    # create model
Yoach Lacombe's avatar
Yoach Lacombe committed
1029
    model = ParlerTTSForConditionalGeneration.from_pretrained(
1030
1031
1032
1033
1034
1035
        model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        config=config,
        token=data_args.token,
        trust_remote_code=data_args.trust_remote_code,
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
1036

1037
1038
1039
    # enable gradient checkpointing if necessary
    if training_args.gradient_checkpointing:
        model.gradient_checkpointing_enable()
Yoach Lacombe's avatar
Yoach Lacombe committed
1040

1041
    # 4. Now we preprocess the datasets including loading the audio, resampling and normalization
1042
1043
1044
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`
Yoach Lacombe's avatar
Yoach Lacombe committed
1045

1046
    # derive max & min input length for sample rate & max duration
1047
1048
1049
    sampling_rate = feature_extractor.sampling_rate
    max_target_length = data_args.max_duration_in_seconds * sampling_rate
    min_target_length = data_args.min_duration_in_seconds * sampling_rate
1050
1051
1052
1053
    target_audio_column_name = data_args.target_audio_column_name
    description_column_name = data_args.description_column_name
    prompt_column_name = data_args.prompt_column_name
    feature_extractor_input_name = feature_extractor.model_input_names[0]
Yoach Lacombe's avatar
Yoach Lacombe committed
1054
1055
    audio_encoder_pad_token_id = config.decoder.pad_token_id
    audio_encoder_eos_token_id = config.decoder.eos_token_id
Yoach Lacombe's avatar
Yoach Lacombe committed
1056
1057
1058
    audio_encoder_bos_token_id = model.generation_config.decoder_start_token_id
    max_length = model.generation_config.max_length
    num_codebooks = model.decoder.config.num_codebooks
Yoach Lacombe's avatar
Yoach Lacombe committed
1059
    bandwidth = model_args.bandwidth
Yoach Lacombe's avatar
Yoach Lacombe committed
1060

1061
1062
    # Freeze Encoders
    model.freeze_encoders(model_args.freeze_text_encoder)
Yoach Lacombe's avatar
Yoach Lacombe committed
1063

1064
1065
1066
1067
1068
    # Test all gather - used for warmout and avoiding timeout
    test_tensor = torch.tensor([accelerator.process_index], device=accelerator.device)
    gathered_tensor = accelerator.gather(test_tensor)
    print("gathered_tensor", gathered_tensor)
    accelerator.wait_for_everyone()
Yoach Lacombe's avatar
Yoach Lacombe committed
1069
1070

    if not dataset_was_precomputed:
1071
        # Filter on text length
1072
        if description_column_name is not None and data_args.max_text_length is not None:
1073
1074
1075
1076
1077
1078
1079
            with accelerator.main_process_first():
                # filter description that is shorter than max_text_length
                raw_datasets = raw_datasets.filter(
                    lambda x: len(x) < data_args.max_text_length,
                    num_proc=num_workers,
                    input_columns=[description_column_name],
                )
1080

1081
1082
1083
1084
        # Preprocessing the dataset.
        # We need to tokenize the texts.
        def pass_through_processors(description, prompt):
            batch = {}
Yoach Lacombe's avatar
Yoach Lacombe committed
1085

1086
1087
            batch["input_ids"] = description_tokenizer(description.strip())["input_ids"]
            batch["prompt_input_ids"] = prompt_tokenizer(prompt.strip())["input_ids"]
1088
1089

            return batch
Yoach Lacombe's avatar
Yoach Lacombe committed
1090

1091
        with accelerator.main_process_first():
1092
            # this is a trick to avoid to rewrite the entire audio column which takes ages
1093
            vectorized_datasets = raw_datasets.map(
1094
1095
                pass_through_processors,
                remove_columns=next(iter(raw_datasets.values())).column_names,
1096
                input_columns=[description_column_name, prompt_column_name],
1097
1098
1099
                num_proc=num_workers,
                desc="preprocess datasets",
            )
1100

1101
        # We use Accelerate to perform distributed inference
1102
        # T5 doesn't support fp16
Yoach Lacombe's avatar
Yoach Lacombe committed
1103
        autocast_kwargs = AutocastKwargs(enabled=(mixed_precision != "fp16"))
1104
1105

        # Now we encode the audio labels with encodec.
1106
        ####### B. Encode audio
1107

1108
        logger.info("*** Encode target audio with encodec ***")
Yoach Lacombe's avatar
Yoach Lacombe committed
1109

1110
1111
        # no need to prepare audio_decoder because used for inference without mixed precision
        # see: https://huggingface.co/docs/accelerate/main/en/package_reference/accelerator#accelerate.Accelerator.prepare
1112
1113
1114
1115
        if training_args.torch_compile:
            audio_decoder = accelerator.prepare_model(model.audio_encoder, evaluation_mode=True)
        else:
            audio_decoder = model.audio_encoder
1116

Yoach Lacombe's avatar
Yoach Lacombe committed
1117
1118
1119
1120
1121
1122
1123
        encoder_data_collator = DataCollatorEncodecWithPadding(
            feature_extractor,
            audio_column_name=target_audio_column_name,
            feature_extractor_input_name=feature_extractor_input_name,
            max_length=max_target_length,
            padding=padding,
        )
1124
1125
1126
1127
1128
1129
1130
1131
1132

        def apply_audio_decoder(batch):
            len_audio = batch.pop("len_audio")
            audio_decoder.to(batch["input_values"].device).eval()
            with torch.no_grad():
                labels = audio_decoder.encode(**batch, bandwidth=bandwidth)["audio_codes"]
            output = {}
            output["len_audio"] = len_audio
            # (1, bsz, codebooks, seq_len) -> (bsz, seq_len, codebooks)
Yoach Lacombe's avatar
Yoach Lacombe committed
1133
1134
            output["labels"] = labels.squeeze(0).transpose(1, 2)
            output["ratio"] = torch.ones_like(len_audio) * labels.shape[-1] / len_audio.max()
Yoach Lacombe's avatar
Yoach Lacombe committed
1135
            return output
1136

1137
1138
        for split in vectorized_datasets:
            data_loader = DataLoader(
1139
                raw_datasets[split],
Yoach Lacombe's avatar
Yoach Lacombe committed
1140
                batch_size=training_args.audio_encoder_per_device_batch_size,
1141
1142
1143
                collate_fn=encoder_data_collator,
                num_workers=training_args.dataloader_num_workers,
                pin_memory=True,
1144
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
1145
1146
            data_loader = accelerator.prepare(data_loader)

1147
1148
1149
1150
1151
1152
            all_generated_labels = []
            all_lens = []
            for batch in tqdm(data_loader, disable=not accelerator.is_local_main_process):
                generate_labels = apply_audio_decoder(batch)
                generate_labels = accelerator.pad_across_processes(generate_labels, dim=1, pad_index=0)
                generate_labels = accelerator.gather_for_metrics(generate_labels)
Yoach Lacombe's avatar
Yoach Lacombe committed
1153

1154
                if accelerator.is_main_process:
Yoach Lacombe's avatar
Yoach Lacombe committed
1155
                    lab = generate_labels["labels"].cpu().transpose(1, 2).to(torch.int16)
1156
1157
                    rat = generate_labels["ratio"].cpu().squeeze()
                    lens = generate_labels["len_audio"].cpu().squeeze()
Yoach Lacombe's avatar
Yoach Lacombe committed
1158
1159
                    lab = [l[:, : int(ratio * length)] for (l, ratio, length) in zip(lab, rat, lens)]

1160
1161
                    all_generated_labels.extend(lab)
                    all_lens.extend(lens)
Yoach Lacombe's avatar
Yoach Lacombe committed
1162

1163
1164
            # (1, codebooks, seq_len) where seq_len=1
            bos_labels = torch.ones((1, num_codebooks, 1)) * audio_encoder_bos_token_id
Yoach Lacombe's avatar
Yoach Lacombe committed
1165

1166
            if accelerator.is_main_process:
1167
                tmp_labels = Dataset.from_dict({"labels": all_generated_labels, "target_length": all_lens})
Yoach Lacombe's avatar
Yoach Lacombe committed
1168
1169
1170
1171
                tmp_labels.save_to_disk(
                    os.path.join(data_args.temporary_save_to_disk, split),
                    num_proc=1 if split == "eval" else data_args.preprocessing_num_workers,
                )
1172
1173
            accelerator.wait_for_everyone()
            del all_generated_labels
Yoach Lacombe's avatar
Yoach Lacombe committed
1174

1175
            tmp_labels = datasets.load_from_disk(os.path.join(data_args.temporary_save_to_disk, split))
1176
1177
            with accelerator.main_process_first():
                vectorized_datasets[split] = concatenate_datasets([vectorized_datasets[split], tmp_labels], axis=1)
Yoach Lacombe's avatar
Yoach Lacombe committed
1178

1179
            def postprocess_dataset(labels):
1180
                # (1, codebooks, seq_len)
Yoach Lacombe's avatar
Yoach Lacombe committed
1181
                labels = torch.tensor(labels).unsqueeze(0)
1182
1183
                # add bos
                labels = torch.cat([bos_labels, labels], dim=-1)
Yoach Lacombe's avatar
Yoach Lacombe committed
1184
1185
1186
1187
1188
1189
1190
1191
1192

                labels, delay_pattern_mask = build_delay_pattern_mask(
                    labels,
                    bos_token_id=audio_encoder_bos_token_id,
                    pad_token_id=audio_encoder_eos_token_id,
                    max_length=labels.shape[-1] + num_codebooks,
                    num_codebooks=num_codebooks,
                )

1193
1194
1195
1196
1197
1198
                # the first ids of the delay pattern mask are precisely labels, we use the rest of the labels mask
                # to take care of EOS
                # we want labels to look like this:
                #  - [B, a, b, E, E, E, E]
                #  - [B, B, c, d, E, E, E]
                #  - [B, B, B, e, f, E, E]
Yoach Lacombe's avatar
Yoach Lacombe committed
1199
1200
1201
                #  - [B, B, B, B, g, h, E]
                labels = torch.where(delay_pattern_mask == -1, audio_encoder_eos_token_id, delay_pattern_mask)

1202
1203
                # the first timestamp is associated to a row full of BOS, let's get rid of it
                # we also remove the last timestampts (full of PAD)
1204
                output = {"labels": labels[:, 1:]}
1205
1206
1207
1208
1209
                return output

            with accelerator.main_process_first():
                vectorized_datasets[split] = vectorized_datasets[split].map(
                    postprocess_dataset,
Yoach Lacombe's avatar
Yoach Lacombe committed
1210
                    num_proc=data_args.preprocessing_num_workers,  # this one is resource consuming if many processor.
1211
                    input_columns=["labels"],
1212
1213
1214
1215
                    desc="Postprocessing labeling",
                )

        accelerator.free_memory()
1216
        del generate_labels, all_lens
1217

1218
        with accelerator.main_process_first():
1219
            # NOTE: filtering is done at the end because in the `datasets` library, caching audio files is done after most operations
Yoach Lacombe's avatar
Yoach Lacombe committed
1220
            # caching audio files is time and disk-space consuming, so we want to avoid it at all costs, especially for large (>1Kh) audio datasets.
1221
1222
            # That's also why we avoid to concat the processed datasets (vectorized_datasets) with the audio column present in raw_datasets.

1223
1224
1225
1226
1227
1228
1229
1230
1231
            def is_audio_in_length_range(length):
                return length > min_target_length and length < max_target_length

            # filter data that is shorter than min_target_length
            vectorized_datasets = vectorized_datasets.filter(
                is_audio_in_length_range,
                num_proc=num_workers,
                input_columns=["target_length"],
            )
Yoach Lacombe's avatar
Yoach Lacombe committed
1232

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
            if description_column_name is not None and data_args.max_description_token_length is not None:
                with accelerator.main_process_first():
                    # filter description that is shorter than max_text_length
                    vectorized_datasets = vectorized_datasets.filter(
                        lambda x: len(x) < data_args.max_description_token_length,
                        num_proc=num_workers,
                        input_columns=["input_ids"],
                    )

            if data_args.max_prompt_token_length is not None:
                with accelerator.main_process_first():
                    # filter description that is shorter than max_text_length
                    vectorized_datasets = vectorized_datasets.filter(
                        lambda x: len(x) < data_args.max_prompt_token_length,
                        num_proc=num_workers,
                        input_columns=["prompt_input_ids"],
                    )
Yoach Lacombe's avatar
Yoach Lacombe committed
1250

1251
    if data_args.save_to_disk is not None and not dataset_was_precomputed:
1252
        if accelerator.is_main_process:
Yoach Lacombe's avatar
Yoach Lacombe committed
1253
1254
1255
1256
            vectorized_datasets.save_to_disk(
                data_args.save_to_disk,
                num_proc=min(data_args.preprocessing_num_workers, len(vectorized_datasets["eval"]) - 1),
            )
1257
        logger.info(f"Dataset saved at {data_args.save_to_disk}")
Yoach Lacombe's avatar
Yoach Lacombe committed
1258

1259
1260
1261
    audio_max_length = None
    if training_args.torch_compile:
        audio_max_length = max(vectorized_datasets["train"]["target_length"])
Yoach Lacombe's avatar
Yoach Lacombe committed
1262
        with accelerator.main_process_first():
1263
            max_sample = vectorized_datasets["train"].filter(
Yoach Lacombe's avatar
Yoach Lacombe committed
1264
1265
1266
1267
                lambda x: x == audio_max_length,
                num_proc=num_workers,
                input_columns=["target_length"],
            )
1268
        audio_max_length = torch.tensor(max_sample[0]["labels"]).shape[1]
1269
1270
1271
1272
1273
1274

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
1275
    if data_args.preprocessing_only and data_args.save_to_disk is None:
Yoach Lacombe's avatar
Yoach Lacombe committed
1276
1277
1278
        raise ValueError(
            "`preprocessing_only=True` but `save_to_disk` is not set. The latter should indicates where to save the dataset locally."
        )
1279
1280
    elif data_args.preprocessing_only:
        logger.info(f"Data preprocessing finished. Files save at {data_args.save_to_disk}")
1281
        return
Yoach Lacombe's avatar
Yoach Lacombe committed
1282

1283
    # 6. Next, we can prepare the training.
Yoach Lacombe's avatar
Yoach Lacombe committed
1284

Yoach Lacombe's avatar
Yoach Lacombe committed
1285
    # Let's use word CLAP similary and WER metrics as our evaluation metrics,
1286

Yoach Lacombe's avatar
Yoach Lacombe committed
1287
1288
1289
    # Define evaluation metrics during training, *i.e.* CLAP similarity
    clap = AutoModel.from_pretrained(model_args.clap_model_name_or_path)
    clap_processor = AutoProcessor.from_pretrained(model_args.clap_model_name_or_path)
Yoach Lacombe's avatar
Yoach Lacombe committed
1290
    metric = evaluate.load("wer")
Yoach Lacombe's avatar
Yoach Lacombe committed
1291

Yoach Lacombe's avatar
Yoach Lacombe committed
1292
1293
1294
    def clap_similarity(texts, audios, device):
        clap_inputs = clap_processor(text=texts, audios=audios, padding=True, return_tensors="pt").to(device)
        clap.to(device)
1295
        with torch.no_grad():
Yoach Lacombe's avatar
Yoach Lacombe committed
1296
1297
1298
            text_features = clap.get_text_features(
                clap_inputs["input_ids"], attention_mask=clap_inputs.get("attention_mask", None)
            )
1299
            audio_features = clap.get_audio_features(clap_inputs["input_features"])
Yoach Lacombe's avatar
Yoach Lacombe committed
1300

1301
            cosine_sim = torch.nn.functional.cosine_similarity(audio_features, text_features, dim=1, eps=1e-8)
Yoach Lacombe's avatar
Yoach Lacombe committed
1302

Yoach Lacombe's avatar
Yoach Lacombe committed
1303
1304
        clap.to("cpu")
        clap_inputs.to("cpu")
1305
        return cosine_sim.mean().to("cpu")
Yoach Lacombe's avatar
Yoach Lacombe committed
1306

Yoach Lacombe's avatar
Yoach Lacombe committed
1307
    def wer(prompts, audios, device):
Yoach Lacombe's avatar
Yoach Lacombe committed
1308
        asr_pipeline = pipeline(model=model_args.asr_model_name_or_path, device=device)
Yoach Lacombe's avatar
Yoach Lacombe committed
1309
1310
1311
1312
1313
1314
1315
1316
1317
        transcriptions = asr_pipeline(
            [{"raw": audio, "sampling_rate": sampling_rate} for audio in audios],
            batch_size=int(training_args.per_device_eval_batch_size),
        )

        word_error = 100 * metric.compute(
            predictions=[t["text"].lower() for t in transcriptions], references=[t.lower() for t in prompts]
        )

Yoach Lacombe's avatar
Yoach Lacombe committed
1318
        return word_error, [t["text"] for t in transcriptions]
Yoach Lacombe's avatar
Yoach Lacombe committed
1319

Yoach Lacombe's avatar
Yoach Lacombe committed
1320
    eval_methods = {"clap": clap_similarity, "wer": wer}
1321

Yoach Lacombe's avatar
Yoach Lacombe committed
1322
1323
    def compute_metrics(audios, descriptions, prompts, device="cpu"):
        input_ids = descriptions
1324
        texts = description_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
Yoach Lacombe's avatar
Yoach Lacombe committed
1325
1326
        prompts = prompt_tokenizer.batch_decode(prompts, skip_special_tokens=True)
        audios = [a.cpu().numpy() for a in audios]
Yoach Lacombe's avatar
Yoach Lacombe committed
1327
        results = {"clap": eval_methods["clap"](texts, audios, device)}
Yoach Lacombe's avatar
Yoach Lacombe committed
1328
1329
        word_error, transcriptions = eval_methods["wer"](prompts, audios, device)
        results["wer"] = word_error
1330

Yoach Lacombe's avatar
Yoach Lacombe committed
1331
        return results, texts, prompts, audios, transcriptions
Yoach Lacombe's avatar
Yoach Lacombe committed
1332

Yoach Lacombe's avatar
Yoach Lacombe committed
1333
1334
1335
1336
1337
1338
    # Define Training Schedule
    # Store some constants
    per_device_train_batch_size = int(training_args.per_device_train_batch_size)
    train_batch_size = per_device_train_batch_size * accelerator.num_processes
    gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
Yoach Lacombe's avatar
Yoach Lacombe committed
1339

Yoach Lacombe's avatar
Yoach Lacombe committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
    if training_args.max_steps < 0:
        num_epochs = int(training_args.num_train_epochs)
        steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
        total_train_steps = steps_per_epoch * num_epochs
    elif training_args.max_steps > 0:
        logger.info("max_steps is given, it will override any value given in num_train_epochs")
        total_train_steps = int(training_args.max_steps)
        # Setting a very large number of epochs so we go as many times as necessary over the iterator.
        num_epochs = sys.maxsize
        steps_per_epoch = total_train_steps

    if training_args.eval_steps is None:
Yoach Lacombe's avatar
Yoach Lacombe committed
1352
        logger.info(f"eval_steps is not set, evaluating at the end of each epoch")
Yoach Lacombe's avatar
Yoach Lacombe committed
1353
1354
1355
        eval_steps = steps_per_epoch
    else:
        eval_steps = training_args.eval_steps
Yoach Lacombe's avatar
Yoach Lacombe committed
1356

1357
    # T5 doesn't support fp16
Yoach Lacombe's avatar
Yoach Lacombe committed
1358
1359
    autocast_kwargs = AutocastKwargs(enabled=(mixed_precision != "fp16"))

Yoach Lacombe's avatar
Yoach Lacombe committed
1360
1361
1362
1363
1364
1365
    # Define optimizer, LR scheduler, collator
    optimizer = torch.optim.AdamW(
        params=model.parameters(),
        lr=training_args.learning_rate,
        betas=(training_args.adam_beta1, training_args.adam_beta2),
        eps=training_args.adam_epsilon,
1366
        weight_decay=training_args.weight_decay,
Yoach Lacombe's avatar
Yoach Lacombe committed
1367
    )
1368

Yoach Lacombe's avatar
Yoach Lacombe committed
1369
1370
1371
1372
    # LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
    lr_scheduler = get_scheduler(
        name=training_args.lr_scheduler_type,
        optimizer=optimizer,
Yoach Lacombe's avatar
Yoach Lacombe committed
1373
        num_warmup_steps=training_args.get_warmup_steps(total_train_steps) * accelerator.num_processes,
Yoach Lacombe's avatar
Yoach Lacombe committed
1374
1375
        num_training_steps=total_train_steps * accelerator.num_processes,
    )
1376
1377

    # Instantiate custom data collator
Yoach Lacombe's avatar
Yoach Lacombe committed
1378
    data_collator = DataCollatorParlerTTSWithPadding(
Yoach Lacombe's avatar
Yoach Lacombe committed
1379
1380
1381
1382
1383
1384
1385
        prompt_tokenizer=prompt_tokenizer,
        description_tokenizer=description_tokenizer,
        pad_to_multiple_of=data_args.pad_to_multiple_of,
        padding=padding,
        prompt_max_length=data_args.max_prompt_token_length,
        description_max_length=data_args.max_description_token_length,
        audio_max_length=audio_max_length,
1386
    )
Yoach Lacombe's avatar
Yoach Lacombe committed
1387

Yoach Lacombe's avatar
Yoach Lacombe committed
1388
1389
    # Prepare everything with accelerate
    model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
Yoach Lacombe's avatar
Yoach Lacombe committed
1390

Yoach Lacombe's avatar
Yoach Lacombe committed
1391
1392
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
1393
    logger.info("  Instantaneous batch size per device =" f" {per_device_train_batch_size}")
Yoach Lacombe's avatar
Yoach Lacombe committed
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
    logger.info("  Gradient accumulation steps =" f" {gradient_accumulation_steps}")
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
    )
    logger.info(f"  Total optimization steps = {total_train_steps}")

    # ======================== Training ================================
    train_time = 0
    train_start = time.time()
    steps_trained_progress_bar = tqdm(
        range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
    )
    continue_training = True
    epochs_trained = 0
    cur_step = 0

    checkpoint = None
    if training_args.resume_from_checkpoint is not None:
        checkpoint = training_args.resume_from_checkpoint
    elif last_checkpoint is not None:
        checkpoint = last_checkpoint
Yoach Lacombe's avatar
Yoach Lacombe committed
1415

Yoach Lacombe's avatar
Yoach Lacombe committed
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
    if accelerator.is_main_process:
        if training_args.push_to_hub:
            # Retrieve of infer repo_name
            repo_name = training_args.hub_model_id
            if repo_name is None:
                repo_name = Path(training_args.output_dir).absolute().name
            # Create repo and retrieve repo_id
            repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
            # Clone repo locally
            repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)

            with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
                if "wandb" not in gitignore:
                    gitignore.write("wandb\n")
        elif training_args.output_dir is not None:
            os.makedirs(training_args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()
Yoach Lacombe's avatar
Yoach Lacombe committed
1433

Yoach Lacombe's avatar
Yoach Lacombe committed
1434
1435
1436
1437
1438
1439
    # Now save everything to be able to create a single processor later
    # make sure all processes wait until data is saved
    with accelerator.main_process_first():
        # only the main process saves them
        if accelerator.is_main_process:
            # save feature extractor, tokenizer and config
Yoach Lacombe's avatar
Yoach Lacombe committed
1440
1441
1442
1443
1444
            if (
                model_args.prompt_tokenizer_name is None
                and model_args.description_tokenizer_name
                or (model_args.prompt_tokenizer_name == model_args.description_tokenizer_name)
            ):
Yoach Lacombe's avatar
Yoach Lacombe committed
1445
1446
                prompt_tokenizer.save_pretrained(training_args.output_dir)
            else:
Yoach Lacombe's avatar
Yoach Lacombe committed
1447
1448
1449
                logger.warning(
                    "Prompt tokenizer ('{model_args.prompt_tokenizer_name}') and description tokenizer ('{model_args.description_tokenizer_name}') are not the same. Saving only the prompt tokenizer."
                )
Yoach Lacombe's avatar
Yoach Lacombe committed
1450
                prompt_tokenizer.save_pretrained(training_args.output_dir)
Yoach Lacombe's avatar
Yoach Lacombe committed
1451

Yoach Lacombe's avatar
Yoach Lacombe committed
1452
1453
            feature_extractor.save_pretrained(training_args.output_dir)
            config.save_pretrained(training_args.output_dir)
Yoach Lacombe's avatar
Yoach Lacombe committed
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

    if checkpoint is not None:
        accelerator.load_state(checkpoint)
        # Find num steps and epoch from saved state string pattern
        pattern = r"checkpoint-(\d+)-epoch-(\d+)"
        match = re.search(pattern, checkpoint)
        cur_step = int(match.group(1))
        epochs_trained = int(match.group(2))

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info(f"  Continuing training from epoch {epochs_trained}")
        logger.info(f"  Continuing training from global step {cur_step}")

        steps_trained_progress_bar.update(cur_step)

        for epoch in range(0, epochs_trained):
            vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
Yoach Lacombe's avatar
Yoach Lacombe committed
1471

Yoach Lacombe's avatar
Yoach Lacombe committed
1472
1473
        if training_args.max_steps < 0:
            # we know exactly the number of steps per epoch, so can skip through the required number of batches
1474
            resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
Yoach Lacombe's avatar
Yoach Lacombe committed
1475
1476
1477
1478
1479
1480
1481
1482
        else:
            # Currently we don't know how many steps we've taken in the current epoch
            # So we just shuffle the dataset one extra time and start from a fresh epoch
            # This is "good enough" for our purposes but not fully correct
            resume_step = None
            vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
    else:
        resume_step = None
Yoach Lacombe's avatar
Yoach Lacombe committed
1483

Yoach Lacombe's avatar
Yoach Lacombe committed
1484
1485
    gen_kwargs = {
        "do_sample": model_args.do_sample,
yoach@huggingface.co's avatar
yoach@huggingface.co committed
1486
        "temperature": model_args.temperature,
Yoach Lacombe's avatar
Yoach Lacombe committed
1487
1488
        "max_length": model_args.max_length,
    }
Yoach Lacombe's avatar
Yoach Lacombe committed
1489

Yoach Lacombe's avatar
Yoach Lacombe committed
1490
1491
1492
    # Define gradient update step fn
    def train_step(
        batch,
1493
1494
        accelerator,
        autocast_kwargs,
Yoach Lacombe's avatar
Yoach Lacombe committed
1495
1496
    ):
        model.train()
Yoach Lacombe's avatar
Yoach Lacombe committed
1497

1498
        if mixed_precision == "fp16":
1499
1500
            # fp16 doesn't work with T5-like models
            with accelerator.autocast(autocast_handler=autocast_kwargs):
1501
                if training_args.parallel_mode.value != "distributed":
Yoach Lacombe's avatar
Yoach Lacombe committed
1502
1503
1504
                    encoder_outputs = model.text_encoder(
                        input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
                    )
1505
                else:
Yoach Lacombe's avatar
Yoach Lacombe committed
1506
1507
1508
                    encoder_outputs = model.module.text_encoder(
                        input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
                    )
1509
                batch["encoder_outputs"] = encoder_outputs
Yoach Lacombe's avatar
Yoach Lacombe committed
1510

Yoach Lacombe's avatar
Yoach Lacombe committed
1511
1512
1513
1514
1515
1516
        outputs = model(**batch)
        # CE (data) loss
        ce_loss = outputs.loss

        metrics = {"loss": ce_loss}
        return ce_loss, metrics
Yoach Lacombe's avatar
Yoach Lacombe committed
1517

Yoach Lacombe's avatar
Yoach Lacombe committed
1518
    # Define eval fn
Yoach Lacombe's avatar
Yoach Lacombe committed
1519
1520
1521
1522
1523
    def eval_step(
        batch,
        accelerator,
        autocast_kwargs,
    ):
Yoach Lacombe's avatar
Yoach Lacombe committed
1524
1525
1526
        eval_model = model if not training_args.torch_compile else model._orig_mod
        eval_model.eval()

1527
        if mixed_precision == "fp16":
1528
1529
            # fp16 doesn't work with T5-like models
            with accelerator.autocast(autocast_handler=autocast_kwargs):
Yoach Lacombe's avatar
Yoach Lacombe committed
1530
1531
                with torch.no_grad():
                    if training_args.parallel_mode.value != "distributed" or training_args.torch_compile:
Yoach Lacombe's avatar
Yoach Lacombe committed
1532
1533
1534
                        encoder_outputs = eval_model.text_encoder(
                            input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
                        )
Yoach Lacombe's avatar
Yoach Lacombe committed
1535
                    else:
Yoach Lacombe's avatar
Yoach Lacombe committed
1536
1537
1538
                        encoder_outputs = eval_model.module.text_encoder(
                            input_ids=batch.get("input_ids"), attention_mask=batch.get("attention_mask", None)
                        )
1539
                batch["encoder_outputs"] = encoder_outputs
Yoach Lacombe's avatar
Yoach Lacombe committed
1540
1541

        with torch.no_grad():
Yoach Lacombe's avatar
Yoach Lacombe committed
1542
            outputs = eval_model(**batch)
Yoach Lacombe's avatar
Yoach Lacombe committed
1543
1544
1545
1546
1547
1548
        # CE (data) loss
        ce_loss = outputs.loss
        metrics = {"loss": ce_loss}
        return metrics

    def generate_step(batch):
1549
        batch.pop("decoder_attention_mask", None)
Yoach Lacombe's avatar
Yoach Lacombe committed
1550
        eval_model = accelerator.unwrap_model(model, keep_fp32_wrapper=mixed_precision != "fp16").eval()
Yoach Lacombe's avatar
Yoach Lacombe committed
1551
1552
1553
1554
        if training_args.torch_compile:
            eval_model = model._orig_mod

        output_audios = eval_model.generate(**batch, **gen_kwargs)
Yoach Lacombe's avatar
Yoach Lacombe committed
1555
1556
1557
1558
1559
        output_audios = accelerator.pad_across_processes(output_audios, dim=1, pad_index=0)
        return output_audios

    for epoch in range(epochs_trained, num_epochs):
        vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
Yoach Lacombe's avatar
Yoach Lacombe committed
1560
1561
1562
        sampler = None
        if training_args.group_by_length:
            sampler = LengthGroupedSampler(train_batch_size, lengths=vectorized_datasets["train"]["target_length"])
Yoach Lacombe's avatar
Yoach Lacombe committed
1563
1564
1565
1566
        train_dataloader = DataLoader(
            vectorized_datasets["train"],
            collate_fn=data_collator,
            batch_size=per_device_train_batch_size,
Yoach Lacombe's avatar
Yoach Lacombe committed
1567
            sampler=sampler,
Yoach Lacombe's avatar
Yoach Lacombe committed
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
            num_workers=training_args.dataloader_num_workers,
            pin_memory=training_args.dataloader_pin_memory,
        )
        train_dataloader = accelerator.prepare(train_dataloader)
        if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
            train_dataloader.dataset.set_epoch(epoch)

        if resume_step is not None:
            # Skip the first N batches in the dataloader when resuming from a checkpoint
            train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
            resume_step = None

        for batch in train_dataloader:
            with accelerator.accumulate(model):
1582
                loss, train_metric = train_step(batch, accelerator, autocast_kwargs)
Yoach Lacombe's avatar
Yoach Lacombe committed
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), training_args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Check if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                steps_trained_progress_bar.update(1)
                cur_step += 1

                if cur_step % training_args.logging_steps == 0:
                    steps_trained_progress_bar.write(
                        f"Step... ({cur_step} / {total_train_steps} | Loss:"
                        f" {train_metric['loss']}, Learning Rate:"
                        f" {lr_scheduler.get_last_lr()[0]})"
                    )
                    log_metric(
                        accelerator,
                        metrics=train_metric,
                        learning_rate=lr_scheduler.get_last_lr()[0],
                        train_time=train_time + time.time() - train_start,
                        step=cur_step,
                        epoch=epoch,
                        prefix="train",
                    )

                # save checkpoint and weights after each save_steps and at the end of training
                if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
                    intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
Yoach Lacombe's avatar
Yoach Lacombe committed
1614
                    # safe_serialization=False to avoid shared tensors saving issue (TODO(YL): it's a temporary fix)
1615
1616
                    # https://github.com/huggingface/transformers/issues/27293#issuecomment-1872560074
                    accelerator.save_state(output_dir=intermediate_dir, safe_serialization=False)
Yoach Lacombe's avatar
Yoach Lacombe committed
1617
1618
1619
1620
1621
1622
                    accelerator.wait_for_everyone()
                    if accelerator.is_main_process:
                        rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir)

                        if cur_step == total_train_steps:
                            # un-wrap student model for save
Yoach Lacombe's avatar
Yoach Lacombe committed
1623
1624
                            unwrapped_model = accelerator.unwrap_model(model)
                            unwrapped_model.save_pretrained(training_args.output_dir)
Yoach Lacombe's avatar
Yoach Lacombe committed
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

                        if training_args.push_to_hub:
                            repo.push_to_hub(
                                commit_message=f"Saving train state of step {cur_step}",
                                blocking=False,
                            )

                if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
                    train_time += time.time() - train_start
                    # ======================== Evaluating ==============================
                    eval_metrics = []
                    eval_preds = []
                    eval_descriptions = []
                    eval_prompts = []
                    eval_start = time.time()
Yoach Lacombe's avatar
Yoach Lacombe committed
1640

Yoach Lacombe's avatar
Yoach Lacombe committed
1641
1642
                    # release training input batch
                    batch = release_memory(batch)
Yoach Lacombe's avatar
Yoach Lacombe committed
1643
1644
1645
1646
1647

                    validation_dataloader = DataLoader(
                        vectorized_datasets["eval"],
                        collate_fn=data_collator,
                        batch_size=per_device_eval_batch_size,
1648
                        drop_last=False,
Yoach Lacombe's avatar
Yoach Lacombe committed
1649
1650
1651
1652
1653
1654
1655
                        num_workers=training_args.dataloader_pin_memory,
                        pin_memory=training_args.dataloader_pin_memory,
                    )
                    validation_dataloader = accelerator.prepare(validation_dataloader)

                    for batch in tqdm(
                        validation_dataloader,
1656
                        desc=f"Evaluating - Inference ...",
Yoach Lacombe's avatar
Yoach Lacombe committed
1657
1658
1659
1660
                        position=2,
                        disable=not accelerator.is_local_main_process,
                    ):
                        # Model forward
1661
                        eval_metric = eval_step(batch, accelerator, autocast_kwargs)
Yoach Lacombe's avatar
Yoach Lacombe committed
1662
1663
1664
                        eval_metric = accelerator.gather_for_metrics(eval_metric)
                        eval_metrics.append(eval_metric)

1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
                    if training_args.predict_with_generate:
                        validation_dataloader = DataLoader(
                            vectorized_datasets["eval"],
                            collate_fn=data_collator,
                            batch_size=per_device_eval_batch_size,
                            drop_last=False,
                            num_workers=training_args.dataloader_pin_memory,
                            pin_memory=training_args.dataloader_pin_memory,
                        )
                        validation_dataloader = accelerator.prepare(validation_dataloader)
Yoach Lacombe's avatar
Yoach Lacombe committed
1675
                        # generation
1676
                        for batch in tqdm(
Yoach Lacombe's avatar
Yoach Lacombe committed
1677
1678
1679
1680
1681
                            validation_dataloader,
                            desc=f"Evaluating - Generation ...",
                            position=2,
                            disable=not accelerator.is_local_main_process,
                        ):
Yoach Lacombe's avatar
Yoach Lacombe committed
1682
1683
                            generated_audios = generate_step(batch)
                            # Gather all predictions and targets
Yoach Lacombe's avatar
Yoach Lacombe committed
1684
1685
1686
1687
1688
1689
                            generated_audios, input_ids, prompts = accelerator.pad_across_processes(
                                (generated_audios, batch["input_ids"], batch["prompt_input_ids"]), dim=1, pad_index=0
                            )
                            generated_audios, input_ids, prompts = accelerator.gather_for_metrics(
                                (generated_audios, input_ids, prompts)
                            )
1690
1691
1692
                            eval_preds.extend(generated_audios.to("cpu"))
                            eval_descriptions.extend(input_ids.to("cpu"))
                            eval_prompts.extend(prompts.to("cpu"))
Yoach Lacombe's avatar
Yoach Lacombe committed
1693
1694
1695
1696

                    eval_time = time.time() - eval_start
                    # normalize eval metrics
                    eval_metrics = {
Yoach Lacombe's avatar
Yoach Lacombe committed
1697
1698
                        key: torch.mean(torch.cat([d[key].unsqueeze(0) for d in eval_metrics]))
                        for key in eval_metrics[0]
Yoach Lacombe's avatar
Yoach Lacombe committed
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
                    }

                    # compute metrics
                    metrics_desc = ""
                    if training_args.predict_with_generate:
                        metric_values, pred_descriptions, pred_prompts, audios, transcriptions = compute_metrics(
                            eval_preds, eval_descriptions, eval_prompts, accelerator.device
                        )
                        eval_metrics.update(metric_values)
                        metrics_desc = " ".join([f"Eval {key}: {value} |" for key, value in metric_values.items()])
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
                        if "wandb" in training_args.report_to:
                            log_pred(
                                accelerator,
                                pred_descriptions,
                                pred_prompts,
                                transcriptions,
                                audios,
                                sampling_rate=sampling_rate,
                                step=cur_step,
                                prefix="eval",
                            )
Yoach Lacombe's avatar
Yoach Lacombe committed
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734

                    # Print metrics and update progress bar
                    steps_trained_progress_bar.write(
                        f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
                        f" {metrics_desc})"
                    )

                    log_metric(
                        accelerator,
                        metrics=eval_metrics,
                        train_time=eval_time,
                        step=cur_step,
                        epoch=epoch,
                        prefix="eval",
                    )
Yoach Lacombe's avatar
Yoach Lacombe committed
1735

1736
1737
1738
1739
1740
1741
1742
                    # release eval batch and relax metrics
                    eval_metrics = []
                    eval_preds = []
                    eval_descriptions = []
                    eval_prompts = []
                    batch = release_memory(batch)

Yoach Lacombe's avatar
Yoach Lacombe committed
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
                    # flush the train metrics
                    train_start = time.time()

                # break condition
                if cur_step == total_train_steps:
                    continue_training = False
                    break

        if not continue_training:
            break

    accelerator.end_training()
1755
1756
1757


if __name__ == "__main__":
1758
    set_start_method("spawn")
Yoach Lacombe's avatar
Yoach Lacombe committed
1759
    main()