"vscode:/vscode.git/clone" did not exist on "1bb03b4dfb730e7f1eae8917dcd84485dfe7d5f8"
Unverified Commit a02ba52d authored by Que Nguyen's avatar Que Nguyen Committed by GitHub
Browse files

Merge branch 'dev' into searxng

parents 7b5f434a 1275371e
......@@ -37,7 +37,7 @@ Open WebUI is an [extensible](https://github.com/open-webui/pipelines), feature-
- 📚 **Local RAG Integration**: Dive into the future of chat interactions with groundbreaking Retrieval Augmented Generation (RAG) support. This feature seamlessly integrates document interactions into your chat experience. You can load documents directly into the chat or add files to your document library, effortlessly accessing them using the `#` command before a query.
- 🔍 **Web Search for RAG**: Perform web searches using providers like `SearXNG`, `Google PSE`, `Brave Search`, `serpstack`, `serper`, and `Serply` and inject the results directly into your chat experience.
- 🔍 **Web Search for RAG**: Perform web searches using providers like `SearXNG`, `Google PSE`, `Brave Search`, `serpstack`, `serper`, `Serply`, `DuckDuckGo` and `TavilySearch` and inject the results directly into your chat experience.
- 🌐 **Web Browsing Capability**: Seamlessly integrate websites into your chat experience using the `#` command followed by a URL. This feature allows you to incorporate web content directly into your conversations, enhancing the richness and depth of your interactions.
......
......@@ -18,6 +18,10 @@ If you're experiencing connection issues, it’s often due to the WebUI docker c
docker run -d --network=host -v open-webui:/app/backend/data -e OLLAMA_BASE_URL=http://127.0.0.1:11434 --name open-webui --restart always ghcr.io/open-webui/open-webui:main
```
### Error on Slow Reponses for Ollama
Open WebUI has a default timeout of 5 minutes for Ollama to finish generating the response. If needed, this can be adjusted via the environment variable AIOHTTP_CLIENT_TIMEOUT, which sets the timeout in seconds.
### General Connection Errors
**Ensure Ollama Version is Up-to-Date**: Always start by checking that you have the latest version of Ollama. Visit [Ollama's official site](https://ollama.com/) for the latest updates.
......
......@@ -46,6 +46,7 @@ from config import (
SRC_LOG_LEVELS,
OLLAMA_BASE_URLS,
ENABLE_OLLAMA_API,
AIOHTTP_CLIENT_TIMEOUT,
ENABLE_MODEL_FILTER,
MODEL_FILTER_LIST,
UPLOAD_DIR,
......@@ -154,7 +155,9 @@ async def cleanup_response(
async def post_streaming_url(url: str, payload: str):
r = None
try:
session = aiohttp.ClientSession(trust_env=True)
session = aiohttp.ClientSession(
trust_env=True, timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT)
)
r = await session.post(url, data=payload)
r.raise_for_status()
......@@ -751,6 +754,14 @@ async def generate_chat_completion(
if model_info.params.get("num_ctx", None):
payload["options"]["num_ctx"] = model_info.params.get("num_ctx", None)
if model_info.params.get("num_batch", None):
payload["options"]["num_batch"] = model_info.params.get(
"num_batch", None
)
if model_info.params.get("num_keep", None):
payload["options"]["num_keep"] = model_info.params.get("num_keep", None)
if model_info.params.get("repeat_last_n", None):
payload["options"]["repeat_last_n"] = model_info.params.get(
"repeat_last_n", None
......
......@@ -73,6 +73,7 @@ from apps.rag.search.serper import search_serper
from apps.rag.search.serpstack import search_serpstack
from apps.rag.search.serply import search_serply
from apps.rag.search.duckduckgo import search_duckduckgo
from apps.rag.search.tavily import search_tavily
from utils.misc import (
calculate_sha256,
......@@ -120,6 +121,7 @@ from config import (
SERPSTACK_HTTPS,
SERPER_API_KEY,
SERPLY_API_KEY,
TAVILY_API_KEY,
RAG_WEB_SEARCH_RESULT_COUNT,
RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
RAG_EMBEDDING_OPENAI_BATCH_SIZE,
......@@ -174,6 +176,7 @@ app.state.config.SERPSTACK_API_KEY = SERPSTACK_API_KEY
app.state.config.SERPSTACK_HTTPS = SERPSTACK_HTTPS
app.state.config.SERPER_API_KEY = SERPER_API_KEY
app.state.config.SERPLY_API_KEY = SERPLY_API_KEY
app.state.config.TAVILY_API_KEY = TAVILY_API_KEY
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = RAG_WEB_SEARCH_RESULT_COUNT
app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = RAG_WEB_SEARCH_CONCURRENT_REQUESTS
......@@ -402,6 +405,7 @@ async def get_rag_config(user=Depends(get_admin_user)):
"serpstack_https": app.state.config.SERPSTACK_HTTPS,
"serper_api_key": app.state.config.SERPER_API_KEY,
"serply_api_key": app.state.config.SERPLY_API_KEY,
"tavily_api_key": app.state.config.TAVILY_API_KEY,
"result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
"concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
},
......@@ -430,6 +434,7 @@ class WebSearchConfig(BaseModel):
serpstack_https: Optional[bool] = None
serper_api_key: Optional[str] = None
serply_api_key: Optional[str] = None
tavily_api_key: Optional[str] = None
result_count: Optional[int] = None
concurrent_requests: Optional[int] = None
......@@ -481,6 +486,7 @@ async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_
app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https
app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key
app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key
app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = form_data.web.search.result_count
app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = (
form_data.web.search.concurrent_requests
......@@ -510,6 +516,7 @@ async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_
"serpstack_https": app.state.config.SERPSTACK_HTTPS,
"serper_api_key": app.state.config.SERPER_API_KEY,
"serply_api_key": app.state.config.SERPLY_API_KEY,
"tavily_api_key": app.state.config.TAVILY_API_KEY,
"result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
"concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
},
......@@ -758,7 +765,7 @@ def search_web(engine: str, query: str) -> list[SearchResult]:
- SERPSTACK_API_KEY
- SERPER_API_KEY
- SERPLY_API_KEY
- TAVILY_API_KEY
Args:
query (str): The query to search for
"""
......@@ -833,6 +840,15 @@ def search_web(engine: str, query: str) -> list[SearchResult]:
raise Exception("No SERPLY_API_KEY found in environment variables")
elif engine == "duckduckgo":
return search_duckduckgo(query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, app.state.config.RAG_WEB_SEARCH_WHITE_LIST_DOMAINS)
elif engine == "tavily":
if app.state.config.TAVILY_API_KEY:
return search_tavily(
app.state.config.TAVILY_API_KEY,
query,
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
)
else:
raise Exception("No TAVILY_API_KEY found in environment variables")
else:
raise Exception("No search engine API key found in environment variables")
......
import logging
import requests
from apps.rag.search.main import SearchResult
from config import SRC_LOG_LEVELS
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
def search_tavily(api_key: str, query: str, count: int) -> list[SearchResult]:
"""Search using Tavily's Search API and return the results as a list of SearchResult objects.
Args:
api_key (str): A Tavily Search API key
query (str): The query to search for
Returns:
List[SearchResult]: A list of search results
"""
url = "https://api.tavily.com/search"
data = {"query": query, "api_key": api_key}
response = requests.post(url, json=data)
response.raise_for_status()
json_response = response.json()
raw_search_results = json_response.get("results", [])
return [
SearchResult(
link=result["url"],
title=result.get("title", ""),
snippet=result.get("content"),
)
for result in raw_search_results[:count]
]
......@@ -65,6 +65,20 @@ class MemoriesTable:
else:
return None
def update_memory_by_id(
self,
id: str,
content: str,
) -> Optional[MemoryModel]:
try:
memory = Memory.get(Memory.id == id)
memory.content = content
memory.updated_at = int(time.time())
memory.save()
return MemoryModel(**model_to_dict(memory))
except:
return None
def get_memories(self) -> List[MemoryModel]:
try:
memories = Memory.select()
......
......@@ -44,6 +44,10 @@ class AddMemoryForm(BaseModel):
content: str
class MemoryUpdateModel(BaseModel):
content: Optional[str] = None
@router.post("/add", response_model=Optional[MemoryModel])
async def add_memory(
request: Request, form_data: AddMemoryForm, user=Depends(get_verified_user)
......@@ -62,6 +66,34 @@ async def add_memory(
return memory
@router.post("/{memory_id}/update", response_model=Optional[MemoryModel])
async def update_memory_by_id(
memory_id: str,
request: Request,
form_data: MemoryUpdateModel,
user=Depends(get_verified_user),
):
memory = Memories.update_memory_by_id(memory_id, form_data.content)
if memory is None:
raise HTTPException(status_code=404, detail="Memory not found")
if form_data.content is not None:
memory_embedding = request.app.state.EMBEDDING_FUNCTION(form_data.content)
collection = CHROMA_CLIENT.get_or_create_collection(
name=f"user-memory-{user.id}"
)
collection.upsert(
documents=[form_data.content],
ids=[memory.id],
embeddings=[memory_embedding],
metadatas=[
{"created_at": memory.created_at, "updated_at": memory.updated_at}
],
)
return memory
############################
# QueryMemory
############################
......
......@@ -425,6 +425,7 @@ OLLAMA_API_BASE_URL = os.environ.get(
)
OLLAMA_BASE_URL = os.environ.get("OLLAMA_BASE_URL", "")
AIOHTTP_CLIENT_TIMEOUT = int(os.environ.get("AIOHTTP_CLIENT_TIMEOUT", "300"))
K8S_FLAG = os.environ.get("K8S_FLAG", "")
USE_OLLAMA_DOCKER = os.environ.get("USE_OLLAMA_DOCKER", "false")
......@@ -951,6 +952,11 @@ SERPLY_API_KEY = PersistentConfig(
os.getenv("SERPLY_API_KEY", ""),
)
TAVILY_API_KEY = PersistentConfig(
"TAVILY_API_KEY",
"rag.web.search.tavily_api_key",
os.getenv("TAVILY_API_KEY", ""),
)
RAG_WEB_SEARCH_RESULT_COUNT = PersistentConfig(
"RAG_WEB_SEARCH_RESULT_COUNT",
......
......@@ -494,6 +494,9 @@ def filter_pipeline(payload, user):
if "title" in payload:
del payload["title"]
if "task" in payload:
del payload["task"]
return payload
......@@ -835,6 +838,71 @@ async def generate_search_query(form_data: dict, user=Depends(get_verified_user)
"messages": [{"role": "user", "content": content}],
"stream": False,
"max_tokens": 30,
"task": True,
}
print(payload)
try:
payload = filter_pipeline(payload, user)
except Exception as e:
return JSONResponse(
status_code=e.args[0],
content={"detail": e.args[1]},
)
if model["owned_by"] == "ollama":
return await generate_ollama_chat_completion(
OpenAIChatCompletionForm(**payload), user=user
)
else:
return await generate_openai_chat_completion(payload, user=user)
@app.post("/api/task/emoji/completions")
async def generate_emoji(form_data: dict, user=Depends(get_verified_user)):
print("generate_emoji")
model_id = form_data["model"]
if model_id not in app.state.MODELS:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Model not found",
)
# Check if the user has a custom task model
# If the user has a custom task model, use that model
if app.state.MODELS[model_id]["owned_by"] == "ollama":
if app.state.config.TASK_MODEL:
task_model_id = app.state.config.TASK_MODEL
if task_model_id in app.state.MODELS:
model_id = task_model_id
else:
if app.state.config.TASK_MODEL_EXTERNAL:
task_model_id = app.state.config.TASK_MODEL_EXTERNAL
if task_model_id in app.state.MODELS:
model_id = task_model_id
print(model_id)
model = app.state.MODELS[model_id]
template = '''
Your task is to reflect the speaker's likely facial expression through a fitting emoji. Interpret emotions from the message and reflect their facial expression using fitting, diverse emojis (e.g., 😊, 😢, 😡, 😱).
Message: """{{prompt}}"""
'''
content = title_generation_template(
template, form_data["prompt"], user.model_dump()
)
payload = {
"model": model_id,
"messages": [{"role": "user", "content": content}],
"stream": False,
"max_tokens": 4,
"chat_id": form_data.get("chat_id", None),
"task": True,
}
print(payload)
......
......@@ -28,6 +28,10 @@ math {
@apply rounded-lg;
}
.markdown a {
@apply underline;
}
ol > li {
counter-increment: list-number;
display: block;
......
......@@ -205,6 +205,54 @@ export const generateTitle = async (
return res?.choices[0]?.message?.content.replace(/["']/g, '') ?? 'New Chat';
};
export const generateEmoji = async (
token: string = '',
model: string,
prompt: string,
chat_id?: string
) => {
let error = null;
const res = await fetch(`${WEBUI_BASE_URL}/api/task/emoji/completions`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
Authorization: `Bearer ${token}`
},
body: JSON.stringify({
model: model,
prompt: prompt,
...(chat_id && { chat_id: chat_id })
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
console.log(err);
if ('detail' in err) {
error = err.detail;
}
return null;
});
if (error) {
throw error;
}
const response = res?.choices[0]?.message?.content.replace(/["']/g, '') ?? null;
if (response) {
if (/\p{Extended_Pictographic}/u.test(response)) {
return response.match(/\p{Extended_Pictographic}/gu)[0];
}
}
return null;
};
export const generateSearchQuery = async (
token: string = '',
model: string,
......
......@@ -3,7 +3,7 @@ import { WEBUI_API_BASE_URL } from '$lib/constants';
export const getMemories = async (token: string) => {
let error = null;
const res = await fetch(`${WEBUI_API_BASE_URL}/memories`, {
const res = await fetch(`${WEBUI_API_BASE_URL}/memories/`, {
method: 'GET',
headers: {
Accept: 'application/json',
......@@ -59,6 +59,37 @@ export const addNewMemory = async (token: string, content: string) => {
return res;
};
export const updateMemoryById = async (token: string, id: string, content: string) => {
let error = null;
const res = await fetch(`${WEBUI_API_BASE_URL}/memories/${id}/update`, {
method: 'POST',
headers: {
Accept: 'application/json',
'Content-Type': 'application/json',
authorization: `Bearer ${token}`
},
body: JSON.stringify({
content: content
})
})
.then(async (res) => {
if (!res.ok) throw await res.json();
return res.json();
})
.catch((err) => {
error = err.detail;
console.log(err);
return null;
});
if (error) {
throw error;
}
return res;
};
export const queryMemory = async (token: string, content: string) => {
let error = null;
......
......@@ -13,6 +13,8 @@
getRAGConfig,
updateRAGConfig
} from '$lib/apis/rag';
import ResetUploadDirConfirmDialog from '$lib/components/common/ConfirmDialog.svelte';
import ResetVectorDBConfirmDialog from '$lib/components/common/ConfirmDialog.svelte';
import { documents, models } from '$lib/stores';
import { onMount, getContext } from 'svelte';
......@@ -213,6 +215,34 @@
});
</script>
<ResetUploadDirConfirmDialog
bind:show={showResetUploadDirConfirm}
on:confirm={() => {
const res = resetUploadDir(localStorage.token).catch((error) => {
toast.error(error);
return null;
});
if (res) {
toast.success($i18n.t('Success'));
}
}}
/>
<ResetVectorDBConfirmDialog
bind:show={showResetConfirm}
on:confirm={() => {
const res = resetVectorDB(localStorage.token).catch((error) => {
toast.error(error);
return null;
});
if (res) {
toast.success($i18n.t('Success'));
}
}}
/>
<form
class="flex flex-col h-full justify-between space-y-3 text-sm"
on:submit|preventDefault={() => {
......@@ -640,199 +670,56 @@
<hr class=" dark:border-gray-850" />
<div>
{#if showResetUploadDirConfirm}
<div class="flex justify-between rounded-md items-center py-2 px-3.5 w-full transition">
<div class="flex items-center space-x-3">
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 24 24"
fill="currentColor"
class="size-4"
>
<path
fill-rule="evenodd"
d="M5.625 1.5H9a3.75 3.75 0 0 1 3.75 3.75v1.875c0 1.036.84 1.875 1.875 1.875H16.5a3.75 3.75 0 0 1 3.75 3.75v7.875c0 1.035-.84 1.875-1.875 1.875H5.625a1.875 1.875 0 0 1-1.875-1.875V3.375c0-1.036.84-1.875 1.875-1.875ZM9.75 14.25a.75.75 0 0 0 0 1.5H15a.75.75 0 0 0 0-1.5H9.75Z"
clip-rule="evenodd"
/>
<path
d="M14.25 5.25a5.23 5.23 0 0 0-1.279-3.434 9.768 9.768 0 0 1 6.963 6.963A5.23 5.23 0 0 0 16.5 7.5h-1.875a.375.375 0 0 1-.375-.375V5.25Z"
/>
</svg>
<span>{$i18n.t('Are you sure?')}</span>
</div>
<div class="flex space-x-1.5 items-center">
<button
class="hover:text-white transition"
on:click={() => {
const res = resetUploadDir(localStorage.token).catch((error) => {
toast.error(error);
return null;
});
if (res) {
toast.success($i18n.t('Success'));
}
showResetUploadDirConfirm = false;
}}
type="button"
>
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 20 20"
fill="currentColor"
class="w-4 h-4"
>
<path
fill-rule="evenodd"
d="M16.704 4.153a.75.75 0 01.143 1.052l-8 10.5a.75.75 0 01-1.127.075l-4.5-4.5a.75.75 0 011.06-1.06l3.894 3.893 7.48-9.817a.75.75 0 011.05-.143z"
clip-rule="evenodd"
/>
</svg>
</button>
<button
class="hover:text-white transition"
type="button"
on:click={() => {
showResetUploadDirConfirm = false;
}}
>
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 20 20"
fill="currentColor"
class="w-4 h-4"
>
<path
d="M6.28 5.22a.75.75 0 00-1.06 1.06L8.94 10l-3.72 3.72a.75.75 0 101.06 1.06L10 11.06l3.72 3.72a.75.75 0 101.06-1.06L11.06 10l3.72-3.72a.75.75 0 00-1.06-1.06L10 8.94 6.28 5.22z"
/>
</svg>
</button>
</div>
<button
class=" flex rounded-xl py-2 px-3.5 w-full hover:bg-gray-200 dark:hover:bg-gray-800 transition"
on:click={() => {
showResetUploadDirConfirm = true;
}}
type="button"
>
<div class=" self-center mr-3">
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 24 24"
fill="currentColor"
class="size-4"
>
<path
fill-rule="evenodd"
d="M5.625 1.5H9a3.75 3.75 0 0 1 3.75 3.75v1.875c0 1.036.84 1.875 1.875 1.875H16.5a3.75 3.75 0 0 1 3.75 3.75v7.875c0 1.035-.84 1.875-1.875 1.875H5.625a1.875 1.875 0 0 1-1.875-1.875V3.375c0-1.036.84-1.875 1.875-1.875ZM9.75 14.25a.75.75 0 0 0 0 1.5H15a.75.75 0 0 0 0-1.5H9.75Z"
clip-rule="evenodd"
/>
<path
d="M14.25 5.25a5.23 5.23 0 0 0-1.279-3.434 9.768 9.768 0 0 1 6.963 6.963A5.23 5.23 0 0 0 16.5 7.5h-1.875a.375.375 0 0 1-.375-.375V5.25Z"
/>
</svg>
</div>
{:else}
<button
class=" flex rounded-xl py-2 px-3.5 w-full hover:bg-gray-200 dark:hover:bg-gray-800 transition"
on:click={() => {
showResetUploadDirConfirm = true;
}}
type="button"
>
<div class=" self-center mr-3">
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 24 24"
fill="currentColor"
class="size-4"
>
<path
fill-rule="evenodd"
d="M5.625 1.5H9a3.75 3.75 0 0 1 3.75 3.75v1.875c0 1.036.84 1.875 1.875 1.875H16.5a3.75 3.75 0 0 1 3.75 3.75v7.875c0 1.035-.84 1.875-1.875 1.875H5.625a1.875 1.875 0 0 1-1.875-1.875V3.375c0-1.036.84-1.875 1.875-1.875ZM9.75 14.25a.75.75 0 0 0 0 1.5H15a.75.75 0 0 0 0-1.5H9.75Z"
clip-rule="evenodd"
/>
<path
d="M14.25 5.25a5.23 5.23 0 0 0-1.279-3.434 9.768 9.768 0 0 1 6.963 6.963A5.23 5.23 0 0 0 16.5 7.5h-1.875a.375.375 0 0 1-.375-.375V5.25Z"
/>
</svg>
</div>
<div class=" self-center text-sm font-medium">{$i18n.t('Reset Upload Directory')}</div>
</button>
{/if}
{#if showResetConfirm}
<div class="flex justify-between rounded-md items-center py-2 px-3.5 w-full transition">
<div class="flex items-center space-x-3">
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 16 16"
fill="currentColor"
class="w-4 h-4"
>
<path
fill-rule="evenodd"
d="M3.5 2A1.5 1.5 0 0 0 2 3.5v9A1.5 1.5 0 0 0 3.5 14h9a1.5 1.5 0 0 0 1.5-1.5v-7A1.5 1.5 0 0 0 12.5 4H9.621a1.5 1.5 0 0 1-1.06-.44L7.439 2.44A1.5 1.5 0 0 0 6.38 2H3.5Zm6.75 7.75a.75.75 0 0 0 0-1.5h-4.5a.75.75 0 0 0 0 1.5h4.5Z"
clip-rule="evenodd"
/>
</svg>
<span>{$i18n.t('Are you sure?')}</span>
</div>
<div class="flex space-x-1.5 items-center">
<button
class="hover:text-white transition"
on:click={() => {
const res = resetVectorDB(localStorage.token).catch((error) => {
toast.error(error);
return null;
});
if (res) {
toast.success($i18n.t('Success'));
}
showResetConfirm = false;
}}
type="button"
>
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 20 20"
fill="currentColor"
class="w-4 h-4"
>
<path
fill-rule="evenodd"
d="M16.704 4.153a.75.75 0 01.143 1.052l-8 10.5a.75.75 0 01-1.127.075l-4.5-4.5a.75.75 0 011.06-1.06l3.894 3.893 7.48-9.817a.75.75 0 011.05-.143z"
clip-rule="evenodd"
/>
</svg>
</button>
<button
class="hover:text-white transition"
on:click={() => {
showResetConfirm = false;
}}
type="button"
>
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 20 20"
fill="currentColor"
class="w-4 h-4"
>
<path
d="M6.28 5.22a.75.75 0 00-1.06 1.06L8.94 10l-3.72 3.72a.75.75 0 101.06 1.06L10 11.06l3.72 3.72a.75.75 0 101.06-1.06L11.06 10l3.72-3.72a.75.75 0 00-1.06-1.06L10 8.94 6.28 5.22z"
/>
</svg>
</button>
</div>
<div class=" self-center text-sm font-medium">{$i18n.t('Reset Upload Directory')}</div>
</button>
<button
class=" flex rounded-xl py-2 px-3.5 w-full hover:bg-gray-200 dark:hover:bg-gray-800 transition"
on:click={() => {
showResetConfirm = true;
}}
type="button"
>
<div class=" self-center mr-3">
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 16 16"
fill="currentColor"
class="w-4 h-4"
>
<path
fill-rule="evenodd"
d="M3.5 2A1.5 1.5 0 0 0 2 3.5v9A1.5 1.5 0 0 0 3.5 14h9a1.5 1.5 0 0 0 1.5-1.5v-7A1.5 1.5 0 0 0 12.5 4H9.621a1.5 1.5 0 0 1-1.06-.44L7.439 2.44A1.5 1.5 0 0 0 6.38 2H3.5Zm6.75 7.75a.75.75 0 0 0 0-1.5h-4.5a.75.75 0 0 0 0 1.5h4.5Z"
clip-rule="evenodd"
/>
</svg>
</div>
{:else}
<button
class=" flex rounded-xl py-2 px-3.5 w-full hover:bg-gray-200 dark:hover:bg-gray-800 transition"
on:click={() => {
showResetConfirm = true;
}}
type="button"
>
<div class=" self-center mr-3">
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 16 16"
fill="currentColor"
class="w-4 h-4"
>
<path
fill-rule="evenodd"
d="M3.5 2A1.5 1.5 0 0 0 2 3.5v9A1.5 1.5 0 0 0 3.5 14h9a1.5 1.5 0 0 0 1.5-1.5v-7A1.5 1.5 0 0 0 12.5 4H9.621a1.5 1.5 0 0 1-1.06-.44L7.439 2.44A1.5 1.5 0 0 0 6.38 2H3.5Zm6.75 7.75a.75.75 0 0 0 0-1.5h-4.5a.75.75 0 0 0 0 1.5h4.5Z"
clip-rule="evenodd"
/>
</svg>
</div>
<div class=" self-center text-sm font-medium">{$i18n.t('Reset Vector Storage')}</div>
</button>
{/if}
<div class=" self-center text-sm font-medium">{$i18n.t('Reset Vector Storage')}</div>
</button>
</div>
</div>
<div class="flex justify-end pt-3 text-sm font-medium">
......
<script lang="ts">
import { toast } from 'svelte-sonner';
import { onMount, getContext } from 'svelte';
import { WEBUI_API_BASE_URL, WEBUI_BASE_URL } from '$lib/constants';
import { WEBUI_NAME, models, MODEL_DOWNLOAD_POOL, user, config } from '$lib/stores';
import { splitStream } from '$lib/utils';
import {
createModel,
......@@ -11,15 +16,11 @@
uploadModel,
getOllamaConfig
} from '$lib/apis/ollama';
import { WEBUI_API_BASE_URL, WEBUI_BASE_URL } from '$lib/constants';
import { WEBUI_NAME, models, MODEL_DOWNLOAD_POOL, user, config } from '$lib/stores';
import { splitStream } from '$lib/utils';
import { onMount, getContext } from 'svelte';
import { getModels as _getModels } from '$lib/apis';
import Tooltip from '$lib/components/common/Tooltip.svelte';
import Spinner from '$lib/components/common/Spinner.svelte';
import { getModels as _getModels } from '$lib/apis';
import ModelDeleteConfirmDialog from '$lib/components/common/ConfirmDialog.svelte';
const i18n = getContext('i18n');
......@@ -29,6 +30,8 @@
let modelUploadInputElement: HTMLInputElement;
let showModelDeleteConfirm = false;
// Models
let ollamaEnabled = null;
......@@ -549,6 +552,13 @@
});
</script>
<ModelDeleteConfirmDialog
bind:show={showModelDeleteConfirm}
on:confirm={() => {
deleteModelHandler();
}}
/>
<div class="flex flex-col h-full justify-between text-sm">
<div class=" space-y-3 overflow-y-scroll scrollbar-hidden h-full">
{#if ollamaEnabled}
......@@ -763,7 +773,7 @@
<button
class="px-2.5 bg-gray-100 hover:bg-gray-200 text-gray-800 dark:bg-gray-850 dark:hover:bg-gray-800 dark:text-gray-100 rounded-lg transition"
on:click={() => {
deleteModelHandler();
showModelDeleteConfirm = true;
}}
>
<svg
......
......@@ -18,7 +18,8 @@
'serpstack',
'serper',
'serply',
'duckduckgo'
'duckduckgo',
'tavily'
];
let youtubeLanguage = 'en';
......@@ -214,6 +215,24 @@
</div>
</div>
</div>
{:else if webConfig.search.engine === 'tavily'}
<div>
<div class=" self-center text-xs font-medium mb-1">
{$i18n.t('Tavily API Key')}
</div>
<div class="flex w-full">
<div class="flex-1">
<input
class="w-full rounded-lg py-2 px-4 text-sm dark:text-gray-300 dark:bg-gray-850 outline-none"
type="text"
placeholder={$i18n.t('Enter Tavily API Key')}
bind:value={webConfig.search.tavily_api_key}
autocomplete="off"
/>
</div>
</div>
</div>
{/if}
</div>
{/if}
......
......@@ -30,6 +30,7 @@
import {
convertMessagesToHistory,
copyToClipboard,
extractSentencesForAudio,
promptTemplate,
splitStream
} from '$lib/utils';
......@@ -64,6 +65,8 @@
export let chatIdProp = '';
let loaded = false;
const eventTarget = new EventTarget();
let stopResponseFlag = false;
let autoScroll = true;
let processing = '';
......@@ -108,7 +111,8 @@
$: if (chatIdProp) {
(async () => {
if (await loadChat()) {
console.log(chatIdProp);
if (chatIdProp && (await loadChat())) {
await tick();
loaded = true;
......@@ -123,7 +127,11 @@
onMount(async () => {
if (!$chatId) {
await initNewChat();
chatId.subscribe(async (value) => {
if (!value) {
await initNewChat();
}
});
} else {
if (!($settings.saveChatHistory ?? true)) {
await goto('/');
......@@ -300,7 +308,7 @@
// Chat functions
//////////////////////////
const submitPrompt = async (userPrompt, _user = null) => {
const submitPrompt = async (userPrompt, { _raw = false } = {}) => {
let _responses = [];
console.log('submitPrompt', $chatId);
......@@ -344,7 +352,6 @@
parentId: messages.length !== 0 ? messages.at(-1).id : null,
childrenIds: [],
role: 'user',
user: _user ?? undefined,
content: userPrompt,
files: _files.length > 0 ? _files : undefined,
timestamp: Math.floor(Date.now() / 1000), // Unix epoch
......@@ -362,15 +369,13 @@
// Wait until history/message have been updated
await tick();
// Send prompt
_responses = await sendPrompt(userPrompt, userMessageId);
_responses = await sendPrompt(userPrompt, userMessageId, { newChat: true });
}
return _responses;
};
const sendPrompt = async (prompt, parentId, modelId = null, newChat = true) => {
const sendPrompt = async (prompt, parentId, { modelId = null, newChat = false } = {}) => {
let _responses = [];
// If modelId is provided, use it, else use selected model
......@@ -490,7 +495,6 @@
responseMessage.userContext = userContext;
const chatEventEmitter = await getChatEventEmitter(model.id, _chatId);
if (webSearchEnabled) {
await getWebSearchResults(model.id, parentId, responseMessageId);
}
......@@ -503,8 +507,6 @@
}
_responses.push(_response);
console.log('chatEventEmitter', chatEventEmitter);
if (chatEventEmitter) clearInterval(chatEventEmitter);
} else {
toast.error($i18n.t(`Model {{modelId}} not found`, { modelId }));
......@@ -513,88 +515,9 @@
);
await chats.set(await getChatList(localStorage.token));
return _responses;
};
const getWebSearchResults = async (model: string, parentId: string, responseId: string) => {
const responseMessage = history.messages[responseId];
responseMessage.statusHistory = [
{
done: false,
action: 'web_search',
description: $i18n.t('Generating search query')
}
];
messages = messages;
const prompt = history.messages[parentId].content;
let searchQuery = await generateSearchQuery(localStorage.token, model, messages, prompt).catch(
(error) => {
console.log(error);
return prompt;
}
);
if (!searchQuery) {
toast.warning($i18n.t('No search query generated'));
responseMessage.statusHistory.push({
done: true,
error: true,
action: 'web_search',
description: 'No search query generated'
});
messages = messages;
}
responseMessage.statusHistory.push({
done: false,
action: 'web_search',
description: $i18n.t(`Searching "{{searchQuery}}"`, { searchQuery })
});
messages = messages;
const results = await runWebSearch(localStorage.token, searchQuery).catch((error) => {
console.log(error);
toast.error(error);
return null;
});
if (results) {
responseMessage.statusHistory.push({
done: true,
action: 'web_search',
description: $i18n.t('Searched {{count}} sites', { count: results.filenames.length }),
query: searchQuery,
urls: results.filenames
});
if (responseMessage?.files ?? undefined === undefined) {
responseMessage.files = [];
}
responseMessage.files.push({
collection_name: results.collection_name,
name: searchQuery,
type: 'web_search_results',
urls: results.filenames
});
messages = messages;
} else {
responseMessage.statusHistory.push({
done: true,
error: true,
action: 'web_search',
description: 'No search results found'
});
messages = messages;
}
};
const sendPromptOllama = async (model, userPrompt, responseMessageId, _chatId) => {
let _response = null;
......@@ -676,6 +599,16 @@
array.findIndex((i) => JSON.stringify(i) === JSON.stringify(item)) === index
);
eventTarget.dispatchEvent(
new CustomEvent('chat:start', {
detail: {
id: responseMessageId
}
})
);
await tick();
const [res, controller] = await generateChatCompletion(localStorage.token, {
model: model.id,
messages: messagesBody,
......@@ -745,6 +678,23 @@
continue;
} else {
responseMessage.content += data.message.content;
const sentences = extractSentencesForAudio(responseMessage.content);
sentences.pop();
// dispatch only last sentence and make sure it hasn't been dispatched before
if (
sentences.length > 0 &&
sentences[sentences.length - 1] !== responseMessage.lastSentence
) {
responseMessage.lastSentence = sentences[sentences.length - 1];
eventTarget.dispatchEvent(
new CustomEvent('chat', {
detail: { id: responseMessageId, content: sentences[sentences.length - 1] }
})
);
}
messages = messages;
}
} else {
......@@ -771,21 +721,13 @@
messages = messages;
if ($settings.notificationEnabled && !document.hasFocus()) {
const notification = new Notification(
selectedModelfile
? `${
selectedModelfile.title.charAt(0).toUpperCase() +
selectedModelfile.title.slice(1)
}`
: `${model.id}`,
{
body: responseMessage.content,
icon: selectedModelfile?.imageUrl ?? `${WEBUI_BASE_URL}/static/favicon.png`
}
);
const notification = new Notification(`${model.id}`, {
body: responseMessage.content,
icon: `${WEBUI_BASE_URL}/static/favicon.png`
});
}
if ($settings.responseAutoCopy) {
if ($settings?.responseAutoCopy ?? false) {
copyToClipboard(responseMessage.content);
}
......@@ -847,6 +789,23 @@
stopResponseFlag = false;
await tick();
let lastSentence = extractSentencesForAudio(responseMessage.content)?.at(-1) ?? '';
if (lastSentence) {
eventTarget.dispatchEvent(
new CustomEvent('chat', {
detail: { id: responseMessageId, content: lastSentence }
})
);
}
eventTarget.dispatchEvent(
new CustomEvent('chat:finish', {
detail: {
id: responseMessageId,
content: responseMessage.content
}
})
);
if (autoScroll) {
scrollToBottom();
}
......@@ -887,6 +846,15 @@
scrollToBottom();
eventTarget.dispatchEvent(
new CustomEvent('chat:start', {
detail: {
id: responseMessageId
}
})
);
await tick();
try {
const [res, controller] = await generateOpenAIChatCompletion(
localStorage.token,
......@@ -1007,6 +975,23 @@
continue;
} else {
responseMessage.content += value;
const sentences = extractSentencesForAudio(responseMessage.content);
sentences.pop();
// dispatch only last sentence and make sure it hasn't been dispatched before
if (
sentences.length > 0 &&
sentences[sentences.length - 1] !== responseMessage.lastSentence
) {
responseMessage.lastSentence = sentences[sentences.length - 1];
eventTarget.dispatchEvent(
new CustomEvent('chat', {
detail: { id: responseMessageId, content: sentences[sentences.length - 1] }
})
);
}
messages = messages;
}
......@@ -1057,6 +1042,24 @@
stopResponseFlag = false;
await tick();
let lastSentence = extractSentencesForAudio(responseMessage.content)?.at(-1) ?? '';
if (lastSentence) {
eventTarget.dispatchEvent(
new CustomEvent('chat', {
detail: { id: responseMessageId, content: lastSentence }
})
);
}
eventTarget.dispatchEvent(
new CustomEvent('chat:finish', {
detail: {
id: responseMessageId,
content: responseMessage.content
}
})
);
if (autoScroll) {
scrollToBottom();
}
......@@ -1123,9 +1126,12 @@
let userPrompt = userMessage.content;
if ((userMessage?.models ?? [...selectedModels]).length == 1) {
await sendPrompt(userPrompt, userMessage.id, undefined, false);
// If user message has only one model selected, sendPrompt automatically selects it for regeneration
await sendPrompt(userPrompt, userMessage.id);
} else {
await sendPrompt(userPrompt, userMessage.id, message.model, false);
// If there are multiple models selected, use the model of the response message for regeneration
// e.g. many model chat
await sendPrompt(userPrompt, userMessage.id, { modelId: message.model });
}
}
};
......@@ -1191,6 +1197,84 @@
}
};
const getWebSearchResults = async (model: string, parentId: string, responseId: string) => {
const responseMessage = history.messages[responseId];
responseMessage.statusHistory = [
{
done: false,
action: 'web_search',
description: $i18n.t('Generating search query')
}
];
messages = messages;
const prompt = history.messages[parentId].content;
let searchQuery = await generateSearchQuery(localStorage.token, model, messages, prompt).catch(
(error) => {
console.log(error);
return prompt;
}
);
if (!searchQuery) {
toast.warning($i18n.t('No search query generated'));
responseMessage.statusHistory.push({
done: true,
error: true,
action: 'web_search',
description: 'No search query generated'
});
messages = messages;
}
responseMessage.statusHistory.push({
done: false,
action: 'web_search',
description: $i18n.t(`Searching "{{searchQuery}}"`, { searchQuery })
});
messages = messages;
const results = await runWebSearch(localStorage.token, searchQuery).catch((error) => {
console.log(error);
toast.error(error);
return null;
});
if (results) {
responseMessage.statusHistory.push({
done: true,
action: 'web_search',
description: $i18n.t('Searched {{count}} sites', { count: results.filenames.length }),
query: searchQuery,
urls: results.filenames
});
if (responseMessage?.files ?? undefined === undefined) {
responseMessage.files = [];
}
responseMessage.files.push({
collection_name: results.collection_name,
name: searchQuery,
type: 'web_search_results',
urls: results.filenames
});
messages = messages;
} else {
responseMessage.statusHistory.push({
done: true,
error: true,
action: 'web_search',
description: 'No search results found'
});
messages = messages;
}
};
const getTags = async () => {
return await getTagsById(localStorage.token, $chatId).catch(async (error) => {
return [];
......@@ -1206,7 +1290,18 @@
</title>
</svelte:head>
<CallOverlay {submitPrompt} bind:files />
<audio id="audioElement" src="" style="display: none;" />
{#if $showCallOverlay}
<CallOverlay
{submitPrompt}
{stopResponse}
bind:files
modelId={selectedModelIds?.at(0) ?? null}
chatId={$chatId}
{eventTarget}
/>
{/if}
{#if !chatIdProp || (loaded && chatIdProp)}
<div
......
......@@ -348,7 +348,6 @@
<Models
bind:this={modelsElement}
bind:prompt
bind:user
bind:chatInputPlaceholder
{messages}
on:select={(e) => {
......@@ -467,7 +466,7 @@
document.getElementById('chat-textarea')?.focus();
if ($settings?.speechAutoSend ?? false) {
submitPrompt(prompt, user);
submitPrompt(prompt);
}
}}
/>
......@@ -476,7 +475,7 @@
class="w-full flex gap-1.5"
on:submit|preventDefault={() => {
// check if selectedModels support image input
submitPrompt(prompt, user);
submitPrompt(prompt);
}}
>
<div
......@@ -718,7 +717,7 @@
// Submit the prompt when Enter key is pressed
if (prompt !== '' && e.key === 'Enter' && !e.shiftKey) {
submitPrompt(prompt, user);
submitPrompt(prompt);
}
}
}}
......
......@@ -79,7 +79,7 @@
history.currentId = userMessageId;
await tick();
await sendPrompt(userPrompt, userMessageId, undefined, false);
await sendPrompt(userPrompt, userMessageId);
};
const updateChatMessages = async () => {
......
<script lang="ts">
import { WEBUI_BASE_URL } from '$lib/constants';
import { marked } from 'marked';
import { config, user, models as _models } from '$lib/stores';
import { onMount, getContext } from 'svelte';
import { blur, fade } from 'svelte/transition';
import Suggestions from '../MessageInput/Suggestions.svelte';
import { sanitizeResponseContent } from '$lib/utils';
const i18n = getContext('i18n');
......@@ -65,8 +68,12 @@
<div in:fade={{ duration: 200, delay: 200 }}>
{#if models[selectedModelIdx]?.info?.meta?.description ?? null}
<div class="mt-0.5 text-base font-normal text-gray-500 dark:text-gray-400 line-clamp-3">
{models[selectedModelIdx]?.info?.meta?.description}
<div
class="mt-0.5 text-base font-normal text-gray-500 dark:text-gray-400 line-clamp-3 markdown"
>
{@html marked.parse(
sanitizeResponseContent(models[selectedModelIdx]?.info?.meta?.description)
)}
</div>
{#if models[selectedModelIdx]?.info?.meta?.user}
<div class="mt-0.5 text-sm font-normal text-gray-400 dark:text-gray-500">
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment