main.py 1.95 KB
Newer Older
1
import os
Timothy J. Baek's avatar
Timothy J. Baek committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from fastapi import (
    FastAPI,
    Request,
    Depends,
    HTTPException,
    status,
    UploadFile,
    File,
    Form,
)
from fastapi.middleware.cors import CORSMiddleware
from faster_whisper import WhisperModel

from constants import ERROR_MESSAGES
from utils.utils import (
    decode_token,
    get_current_user,
    get_verified_user,
    get_admin_user,
)
from utils.misc import calculate_sha256

24
25
26
27
28
from config import CACHE_DIR, UPLOAD_DIR, WHISPER_MODEL, WHISPER_MODEL_DIR, DEVICE_TYPE

if DEVICE_TYPE != "cuda":
    whisper_device_type = "cpu"

Timothy J. Baek's avatar
Timothy J. Baek committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


@app.post("/transcribe")
def transcribe(
    file: UploadFile = File(...),
    user=Depends(get_current_user),
):
    print(file.content_type)

    if file.content_type not in ["audio/mpeg", "audio/wav"]:
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED,
        )

    try:
        filename = file.filename
        file_path = f"{UPLOAD_DIR}/{filename}"
        contents = file.file.read()
        with open(file_path, "wb") as f:
            f.write(contents)
            f.close()

        model = WhisperModel(
Timothy J. Baek's avatar
refac  
Timothy J. Baek committed
62
            WHISPER_MODEL,
63
            device=whisper_device_type,
Timothy J. Baek's avatar
Timothy J. Baek committed
64
            compute_type="int8",
Timothy J. Baek's avatar
refac  
Timothy J. Baek committed
65
            download_root=WHISPER_MODEL_DIR,
Timothy J. Baek's avatar
Timothy J. Baek committed
66
67
68
69
70
71
72
73
74
75
        )

        segments, info = model.transcribe(file_path, beam_size=5)
        print(
            "Detected language '%s' with probability %f"
            % (info.language, info.language_probability)
        )

        transcript = "".join([segment.text for segment in list(segments)])

76
        return {"text": transcript.strip()}
Timothy J. Baek's avatar
Timothy J. Baek committed
77
78
79
80
81
82
83
84

    except Exception as e:
        print(e)

        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )