utils.py 7.16 KB
Newer Older
1
import os
Timothy J. Baek's avatar
Timothy J. Baek committed
2
import re
3
import logging
Timothy J. Baek's avatar
Timothy J. Baek committed
4
from typing import List
5
from huggingface_hub import snapshot_download
Timothy J. Baek's avatar
Timothy J. Baek committed
6

7
8
9
10
from config import SRC_LOG_LEVELS, CHROMA_CLIENT

log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
Timothy J. Baek's avatar
Timothy J. Baek committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96


def query_doc(collection_name: str, query: str, k: int, embedding_function):
    try:
        # if you use docker use the model from the environment variable
        collection = CHROMA_CLIENT.get_collection(
            name=collection_name,
            embedding_function=embedding_function,
        )
        result = collection.query(
            query_texts=[query],
            n_results=k,
        )
        return result
    except Exception as e:
        raise e


def merge_and_sort_query_results(query_results, k):
    # Initialize lists to store combined data
    combined_ids = []
    combined_distances = []
    combined_metadatas = []
    combined_documents = []

    # Combine data from each dictionary
    for data in query_results:
        combined_ids.extend(data["ids"][0])
        combined_distances.extend(data["distances"][0])
        combined_metadatas.extend(data["metadatas"][0])
        combined_documents.extend(data["documents"][0])

    # Create a list of tuples (distance, id, metadata, document)
    combined = list(
        zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
    )

    # Sort the list based on distances
    combined.sort(key=lambda x: x[0])

    # Unzip the sorted list
    sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)

    # Slicing the lists to include only k elements
    sorted_distances = list(sorted_distances)[:k]
    sorted_ids = list(sorted_ids)[:k]
    sorted_metadatas = list(sorted_metadatas)[:k]
    sorted_documents = list(sorted_documents)[:k]

    # Create the output dictionary
    merged_query_results = {
        "ids": [sorted_ids],
        "distances": [sorted_distances],
        "metadatas": [sorted_metadatas],
        "documents": [sorted_documents],
        "embeddings": None,
        "uris": None,
        "data": None,
    }

    return merged_query_results


def query_collection(
    collection_names: List[str], query: str, k: int, embedding_function
):

    results = []

    for collection_name in collection_names:
        try:
            # if you use docker use the model from the environment variable
            collection = CHROMA_CLIENT.get_collection(
                name=collection_name,
                embedding_function=embedding_function,
            )

            result = collection.query(
                query_texts=[query],
                n_results=k,
            )
            results.append(result)
        except:
            pass

    return merge_and_sort_query_results(results, k)
Timothy J. Baek's avatar
Timothy J. Baek committed
97
98
99


def rag_template(template: str, context: str, query: str):
100
101
    template = template.replace("[context]", context)
    template = template.replace("[query]", query)
Timothy J. Baek's avatar
Timothy J. Baek committed
102
    return template
Timothy J. Baek's avatar
Timothy J. Baek committed
103
104
105


def rag_messages(docs, messages, template, k, embedding_function):
106
    log.debug(f"docs: {docs}")
Timothy J. Baek's avatar
Timothy J. Baek committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

    last_user_message_idx = None
    for i in range(len(messages) - 1, -1, -1):
        if messages[i]["role"] == "user":
            last_user_message_idx = i
            break

    user_message = messages[last_user_message_idx]

    if isinstance(user_message["content"], list):
        # Handle list content input
        content_type = "list"
        query = ""
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                query = content_item["text"]
                break
    elif isinstance(user_message["content"], str):
        # Handle text content input
        content_type = "text"
        query = user_message["content"]
    else:
        # Fallback in case the input does not match expected types
        content_type = None
        query = ""

    relevant_contexts = []

    for doc in docs:
        context = None

        try:
            if doc["type"] == "collection":
                context = query_collection(
                    collection_names=doc["collection_names"],
                    query=query,
                    k=k,
                    embedding_function=embedding_function,
                )
146
147
            elif doc["type"] == "text":
                context = doc["content"]
Timothy J. Baek's avatar
Timothy J. Baek committed
148
149
150
151
152
153
154
155
            else:
                context = query_doc(
                    collection_name=doc["collection_name"],
                    query=query,
                    k=k,
                    embedding_function=embedding_function,
                )
        except Exception as e:
156
            log.exception(e)
Timothy J. Baek's avatar
Timothy J. Baek committed
157
158
159
160
            context = None

        relevant_contexts.append(context)

Timothy J. Baek's avatar
Timothy J. Baek committed
161
162
    log.debug(f"relevant_contexts: {relevant_contexts}")

Timothy J. Baek's avatar
Timothy J. Baek committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    context_string = ""
    for context in relevant_contexts:
        if context:
            context_string += " ".join(context["documents"][0]) + "\n"

    ra_content = rag_template(
        template=template,
        context=context_string,
        query=query,
    )

    if content_type == "list":
        new_content = []
        for content_item in user_message["content"]:
            if content_item["type"] == "text":
                # Update the text item's content with ra_content
                new_content.append({"type": "text", "text": ra_content})
            else:
                # Keep other types of content as they are
                new_content.append(content_item)
        new_user_message = {**user_message, "content": new_content}
    else:
        new_user_message = {
            **user_message,
            "content": ra_content,
        }

    messages[last_user_message_idx] = new_user_message

    return messages
193

Self Denial's avatar
Self Denial committed
194

Self Denial's avatar
Self Denial committed
195
196
197
def embedding_model_get_path(
    embedding_model: str, update_embedding_model: bool = False
):
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
    cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
    local_files_only = not update_embedding_model
    snapshot_kwargs = {
        "cache_dir": cache_dir,
        "local_files_only": local_files_only,
    }

    log.debug(f"SENTENCE_TRANSFORMERS_HOME cache_dir: {cache_dir}")
    log.debug(f"embedding_model: {embedding_model}")
    log.debug(f"update_embedding_model: {update_embedding_model}")
    log.debug(f"local_files_only: {local_files_only}")

    # Inspiration from upstream sentence_transformers
Self Denial's avatar
Self Denial committed
212
213
214
215
216
    if (
        os.path.exists(embedding_model)
        or ("\\" in embedding_model or embedding_model.count("/") > 1)
        and local_files_only
    ):
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        # If fully qualified path exists, return input, else set repo_id
        return embedding_model
    elif "/" not in embedding_model:
        # Set valid repo_id for model short-name
        embedding_model = "sentence-transformers" + "/" + embedding_model

    snapshot_kwargs["repo_id"] = embedding_model

    # Attempt to query the huggingface_hub library to determine the local path and/or to update
    try:
        embedding_model_repo_path = snapshot_download(**snapshot_kwargs)
        log.debug(f"embedding_model_repo_path: {embedding_model_repo_path}")
        return embedding_model_repo_path
    except Exception as e:
        log.exception(f"Cannot determine embedding model snapshot path: {e}")
        return embedding_model