earth.py 8.59 KB
Newer Older
Samuli Laine's avatar
Samuli Laine committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import argparse
import os
import pathlib
import sys
import numpy as np
import torch

import util

import nvdiffrast.torch as dr

#----------------------------------------------------------------------------
# Helpers.

def transform_pos(mtx, pos):
    t_mtx = torch.from_numpy(mtx).cuda() if isinstance(mtx, np.ndarray) else mtx
    posw = torch.cat([pos, torch.ones([pos.shape[0], 1]).cuda()], axis=1)
    return torch.matmul(posw, t_mtx.t())[None, ...]

def render(glctx, mtx, pos, pos_idx, uv, uv_idx, tex, resolution, enable_mip, max_mip_level):
    pos_clip = transform_pos(mtx, pos)
    rast_out, rast_out_db = dr.rasterize(glctx, pos_clip, pos_idx, resolution=[resolution, resolution])

    if enable_mip:
        texc, texd = dr.interpolate(uv[None, ...], rast_out, uv_idx, rast_db=rast_out_db, diff_attrs='all')
        color = dr.texture(tex[None, ...], texc, texd, filter_mode='linear-mipmap-linear', max_mip_level=max_mip_level)
    else:
        texc, _ = dr.interpolate(uv[None, ...], rast_out, uv_idx)
        color = dr.texture(tex[None, ...], texc, filter_mode='linear')

    color = color * torch.clamp(rast_out[..., -1:], 0, 1) # Mask out background.
    return color

#----------------------------------------------------------------------------

def fit_earth(max_iter          = 20000,
              log_interval      = 10,
              display_interval  = None,
              display_res       = 1024,
              enable_mip        = True,
              res               = 512,
Samuli Laine's avatar
Samuli Laine committed
50
              ref_res           = 2048,  # Dropped from 4096 to 2048 to allow using the Cuda rasterizer.
Samuli Laine's avatar
Samuli Laine committed
51
52
53
54
55
56
57
              lr_base           = 1e-2,
              lr_ramp           = 0.1,
              out_dir           = None,
              log_fn            = None,
              texsave_interval  = None,
              texsave_fn        = None,
              imgsave_interval  = None,
Samuli Laine's avatar
Samuli Laine committed
58
59
              imgsave_fn        = None,
              use_opengl        = False):
Samuli Laine's avatar
Samuli Laine committed
60
61
62
63
64
65
66
67

    log_file = None
    if out_dir:
        os.makedirs(out_dir, exist_ok=True)
        if log_fn:
            log_file = open(out_dir + '/' + log_fn, 'wt')
    else:
        imgsave_interval, texsave_interval = None, None
Samuli Laine's avatar
Samuli Laine committed
68

Samuli Laine's avatar
Samuli Laine committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    # Mesh and texture adapted from "3D Earth Photorealistic 2K" model at
    # https://www.turbosquid.com/3d-models/3d-realistic-earth-photorealistic-2k-1279125
    datadir = f'{pathlib.Path(__file__).absolute().parents[1]}/data'
    with np.load(f'{datadir}/earth.npz') as f:
        pos_idx, pos, uv_idx, uv, tex = f.values()
    tex = tex.astype(np.float32)/255.0
    max_mip_level = 9 # Texture is a 4x3 atlas of 512x512 maps.
    print("Mesh has %d triangles and %d vertices." % (pos_idx.shape[0], pos.shape[0]))

    # Some input geometry contains vertex positions in (N, 4) (with v[:,3]==1).  Drop
    # the last column in that case.
    if pos.shape[1] == 4: pos = pos[:, 0:3]

    # Create position/triangle index tensors
    pos_idx = torch.from_numpy(pos_idx.astype(np.int32)).cuda()
    vtx_pos = torch.from_numpy(pos.astype(np.float32)).cuda()
    uv_idx  = torch.from_numpy(uv_idx.astype(np.int32)).cuda()
    vtx_uv  = torch.from_numpy(uv.astype(np.float32)).cuda()

    tex     = torch.from_numpy(tex.astype(np.float32)).cuda()
    tex_opt = torch.full(tex.shape, 0.2, device='cuda', requires_grad=True)
Samuli Laine's avatar
Samuli Laine committed
90
    glctx = dr.RasterizeGLContext() if use_opengl else dr.RasterizeCudaContext()
Samuli Laine's avatar
Samuli Laine committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

    ang = 0.0

    # Adam optimizer for texture with a learning rate ramp.
    optimizer    = torch.optim.Adam([tex_opt], lr=lr_base)
    scheduler    = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: lr_ramp**(float(x)/float(max_iter)))

    # Render.
    ang = 0.0
    texloss_avg = []
    for it in range(max_iter + 1):
        # Random rotation/translation matrix for optimization.
        r_rot = util.random_rotation_translation(0.25)

        # Smooth rotation for display.
        a_rot = np.matmul(util.rotate_x(-0.4), util.rotate_y(ang))
        dist = np.random.uniform(0.0, 48.5)

        # Modelview and modelview + projection matrices.
        proj  = util.projection(x=0.4, n=1.0, f=200.0)
        r_mv  = np.matmul(util.translate(0, 0, -1.5-dist), r_rot)
        r_mvp = np.matmul(proj, r_mv).astype(np.float32)
        a_mv  = np.matmul(util.translate(0, 0, -3.5), a_rot)
        a_mvp = np.matmul(proj, a_mv).astype(np.float32)

        # Measure texture-space RMSE loss
        with torch.no_grad():
            texmask = torch.zeros_like(tex)
            tr = tex.shape[1]//4
            texmask[tr+13:2*tr-13, 25:-25, :] += 1.0
            texmask[25:-25, tr+13:2*tr-13, :] += 1.0
            # Measure only relevant portions of texture when calculating texture
            # PSNR.
            texloss = (torch.sum(texmask * (tex - tex_opt)**2)/torch.sum(texmask))**0.5 # RMSE within masked area.
            texloss_avg.append(float(texloss))

        # Render reference and optimized frames. Always enable mipmapping for reference.
        color = render(glctx, r_mvp, vtx_pos, pos_idx, vtx_uv, uv_idx, tex, ref_res, True, max_mip_level)
        color_opt = render(glctx, r_mvp, vtx_pos, pos_idx, vtx_uv, uv_idx, tex_opt, res, enable_mip, max_mip_level)

        # Reduce the reference to correct size.
        while color.shape[1] > res:
            color = util.bilinear_downsample(color)

        # Compute loss and perform a training step.
        loss = torch.mean((color - color_opt)**2) # L2 pixel loss.
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        scheduler.step()

        # Print/save log.
        if log_interval and (it % log_interval == 0):
            texloss_val = np.mean(np.asarray(texloss_avg))
            texloss_avg = []
            psnr = -10.0 * np.log10(texloss_val**2) # PSNR based on average RMSE.
            s = "iter=%d,loss=%f,psnr=%f" % (it, texloss_val, psnr)
            print(s)
            if log_file:
                log_file.write(s + '\n')

        # Show/save image.
        display_image = display_interval and (it % display_interval == 0)
        save_image = imgsave_interval and (it % imgsave_interval == 0)
        save_texture = texsave_interval and (it % texsave_interval) == 0

        if display_image or save_image:
            ang = ang + 0.1

            with torch.no_grad():
Samuli Laine's avatar
Samuli Laine committed
161
                result_image = render(glctx, a_mvp, vtx_pos, pos_idx, vtx_uv, uv_idx, tex_opt, res, enable_mip, max_mip_level)[0].cpu().numpy()[::-1]
Samuli Laine's avatar
Samuli Laine committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

                if display_image:
                    util.display_image(result_image, size=display_res, title='%d / %d' % (it, max_iter))
                if save_image:
                    util.save_image(out_dir + '/' + (imgsave_fn % it), result_image)

                if save_texture:
                    texture = tex_opt.cpu().numpy()[::-1]
                    util.save_image(out_dir + '/' + (texsave_fn % it), texture)


    # Done.
    if log_file:
        log_file.close()

#----------------------------------------------------------------------------

def main():
    parser = argparse.ArgumentParser(description='Earth texture fitting example')
Samuli Laine's avatar
Samuli Laine committed
181
182
183
    parser.add_argument('--opengl', help='enable OpenGL rendering', action='store_true', default=False)
    parser.add_argument('--outdir', help='specify output directory', default='')
    parser.add_argument('--mip', help='enable mipmapping', action='store_true', default=False)
Samuli Laine's avatar
Samuli Laine committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    parser.add_argument('--display-interval', type=int, default=0)
    parser.add_argument('--max-iter', type=int, default=10000)
    args = parser.parse_args()

    # Set up logging.
    if args.outdir:
        ms = 'mip' if args.mip else 'nomip'
        out_dir = f'{args.outdir}/earth_{ms}'
        print (f'Saving results under {out_dir}')
    else:
        out_dir = None
        print ('No output directory specified, not saving log or images')

    # Run.
Samuli Laine's avatar
Samuli Laine committed
198
    fit_earth(max_iter=args.max_iter, log_interval=10, display_interval=args.display_interval, enable_mip=args.mip, out_dir=out_dir, log_fn='log.txt', texsave_interval=1000, texsave_fn='tex_%06d.png', imgsave_interval=1000, imgsave_fn='img_%06d.png', use_opengl=args.opengl)
Samuli Laine's avatar
Samuli Laine committed
199
200
201
202
203
204
205
206
207
208

    # Done.
    print("Done.")

#----------------------------------------------------------------------------

if __name__ == "__main__":
    main()

#----------------------------------------------------------------------------