utils_data.py 5.04 KB
Newer Older
chenpangpang's avatar
chenpangpang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from utils.utils import instantiate_from_config
import os
import sys
from functools import partial

import numpy as np
import pytorch_lightning as pl
import torch
from torch.utils.data import DataLoader, Dataset

os.chdir(sys.path[0])
sys.path.append("..")


def t_range(name, tensor):
    print(
        f"{name}: shape={tensor.shape}, max={torch.max(tensor)}, min={torch.min(tensor)}."
    )


def worker_init_fn(_):
    worker_info = torch.utils.data.get_worker_info()
    worker_id = worker_info.id
    return np.random.seed(np.random.get_state()[1][0] + worker_id)


class WrappedDataset(Dataset):
    """Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""

    def __init__(self, dataset):
        self.data = dataset

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


class DataModuleFromConfig(pl.LightningDataModule):
    def __init__(
        self,
        batch_size,
        train=None,
        validation=None,
        test=None,
        predict=None,
        train_img=None,
        wrap=False,
        num_workers=None,
        shuffle_test_loader=False,
        use_worker_init_fn=False,
        shuffle_val_dataloader=False,
        test_max_n_samples=None,
        **kwargs,
    ):
        super().__init__()
        self.batch_size = batch_size
        self.dataset_configs = dict()
        self.num_workers = num_workers if num_workers is not None else batch_size * 2
        self.use_worker_init_fn = use_worker_init_fn
        if train is not None:
            self.dataset_configs["train"] = train
            self.train_dataloader = self._train_dataloader
        if validation is not None:
            self.dataset_configs["validation"] = validation
            self.val_dataloader = partial(
                self._val_dataloader, shuffle=shuffle_val_dataloader
            )
        if test is not None:
            self.dataset_configs["test"] = test
            self.test_dataloader = partial(
                self._test_dataloader, shuffle=shuffle_test_loader
            )
        if predict is not None:
            self.dataset_configs["predict"] = predict
            self.predict_dataloader = self._predict_dataloader
        # train image dataset
        if train_img is not None:
            img_data = instantiate_from_config(train_img)
            self.img_loader = img_data.train_dataloader()
        else:
            self.img_loader = None
        self.wrap = wrap
        self.test_max_n_samples = test_max_n_samples
        self.collate_fn = None

    def prepare_data(self):
        # for data_cfg in self.dataset_configs.values():
        #     instantiate_from_config(data_cfg)
        pass

    def setup(self, stage=None):
        self.datasets = dict(
            (k, instantiate_from_config(self.dataset_configs[k]))
            for k in self.dataset_configs
        )
        if self.wrap:
            for k in self.datasets:
                self.datasets[k] = WrappedDataset(self.datasets[k])

    def _train_dataloader(self):
        is_iterable_dataset = False
        if is_iterable_dataset or self.use_worker_init_fn:
            init_fn = worker_init_fn
        else:
            init_fn = None
        loader = DataLoader(
            self.datasets["train"],
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            shuffle=False if is_iterable_dataset else True,
            worker_init_fn=init_fn,
            collate_fn=self.collate_fn,
        )
        if self.img_loader is not None:
            return {"loader_video": loader, "loader_img": self.img_loader}
        else:
            return loader

    def _val_dataloader(self, shuffle=False):
        init_fn = None
        return DataLoader(
            self.datasets["validation"],
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            worker_init_fn=init_fn,
            shuffle=shuffle,
            collate_fn=self.collate_fn,
        )

    def _test_dataloader(self, shuffle=False):
        is_iterable_dataset = False
        if is_iterable_dataset or self.use_worker_init_fn:
            init_fn = worker_init_fn
        else:
            init_fn = None

        # do not shuffle dataloader for iterable dataset
        shuffle = shuffle and (not is_iterable_dataset)
        if self.test_max_n_samples is not None:
            dataset = torch.utils.data.Subset(
                self.datasets["test"], list(range(self.test_max_n_samples))
            )
        else:
            dataset = self.datasets["test"]
        return DataLoader(
            dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            worker_init_fn=init_fn,
            shuffle=shuffle,
            collate_fn=self.collate_fn,
        )

    def _predict_dataloader(self, shuffle=False):
        init_fn = None
        return DataLoader(
            self.datasets["predict"],
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            worker_init_fn=init_fn,
            collate_fn=self.collate_fn,
        )