funcs.py 10.2 KB
Newer Older
chenpangpang's avatar
chenpangpang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from core.models.samplers.ddim import DDIMSampler
import glob
import json
import os
import sys
from collections import OrderedDict

import numpy as np
import torch
import torchvision
from PIL import Image

sys.path.insert(1, os.path.join(sys.path[0], "..", ".."))


def batch_ddim_sampling(
    model,
    cond,
    noise_shape,
    n_samples=1,
    ddim_steps=50,
    ddim_eta=1.0,
    cfg_scale=1.0,
    temporal_cfg_scale=None,
    use_cat_ucg=False,
    **kwargs,
):
    ddim_sampler = DDIMSampler(model)
    uncond_type = model.uncond_type
    batch_size = noise_shape[0]

    # construct unconditional guidance
    if cfg_scale != 1.0:
        if uncond_type == "empty_seq":
            prompts = batch_size * [""]
            # prompts = N * T * [""]  # if is_image_batch=True
            uc_emb = model.get_learned_conditioning(prompts)
        elif uncond_type == "zero_embed":
            c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond
            uc_emb = torch.zeros_like(c_emb)

        # process image condition
        if hasattr(model, "embedder"):
            uc_img = torch.zeros(noise_shape[0], 3, 224, 224).to(model.device)
            # img: b c h w >> b l c
            uc_img = model.get_image_embeds(uc_img)
            uc_emb = torch.cat([uc_emb, uc_img], dim=1)

        if isinstance(cond, dict):
            uc = {key: cond[key] for key in cond.keys()}
            uc.update({"c_crossattn": [uc_emb]})
            # special CFG for frame concatenation
            if use_cat_ucg and hasattr(model, "cond_concat") and model.cond_concat:
                uc_cat = torch.zeros(
                    noise_shape[0], model.cond_channels, *noise_shape[2:]
                ).to(model.device)
                uc.update({"c_concat": [uc_cat]})
        else:
            uc = [uc_emb]
    else:
        uc = None
    # uc.update({'fps': torch.tensor([-4]*batch_size).to(model.device).long()})
    # sampling
    noise = torch.randn(noise_shape, device=model.device)
    # x_T = repeat(noise[:,:,:1,:,:], 'b c l h w -> b c (l t) h w', t=noise_shape[2])
    # x_T = 0.2 * x_T + 0.8 * torch.randn(noise_shape, device=model.device)
    x_T = None
    batch_variants = []
    # batch_variants1, batch_variants2 = [], []
    for _ in range(n_samples):
        if ddim_sampler is not None:
            samples, _ = ddim_sampler.sample(
                S=ddim_steps,
                conditioning=cond,
                batch_size=noise_shape[0],
                shape=noise_shape[1:],
                verbose=False,
                unconditional_guidance_scale=cfg_scale,
                unconditional_conditioning=uc,
                eta=ddim_eta,
                temporal_length=noise_shape[2],
                conditional_guidance_scale_temporal=temporal_cfg_scale,
                x_T=x_T,
                **kwargs,
            )
        # reconstruct from latent to pixel space
        batch_images = model.decode_first_stage(samples)
        batch_variants.append(batch_images)
        """
        pred_x0_list, x_iter_list = _['pred_x0'], _['x_inter']
        steps = [0, 15, 25, 30, 35, 40, 43, 46, 49, 50]
        for nn in steps:
            pred_x0 = pred_x0_list[nn]
            x_iter = x_iter_list[nn]
            batch_images_x0 = model.decode_first_stage(pred_x0)
            batch_variants1.append(batch_images_x0)
            batch_images_xt = model.decode_first_stage(x_iter)
            batch_variants2.append(batch_images_xt)
        """
    # batch, <samples>, c, t, h, w
    batch_variants = torch.stack(batch_variants, dim=1)
    # batch_variants1 = torch.stack(batch_variants1, dim=1)
    # batch_variants2 = torch.stack(batch_variants2, dim=1)
    # return batch_variants1, batch_variants2
    return batch_variants


def batch_sliding_interpolation(
    model,
    cond,
    base_videos,
    base_stride,
    noise_shape,
    n_samples=1,
    ddim_steps=50,
    ddim_eta=1.0,
    cfg_scale=1.0,
    temporal_cfg_scale=None,
    **kwargs,
):
    """
    Current implementation has a flaw: the inter-episode keyframe is used as pre-last and cur-first, so keyframe repeated.
    For example, cond_frames=[0,4,7], model.temporal_length=8, base_stride=4, then
    base frame  : 0   4   8   12  16  20  24  28
    interplation: (0~7)   (8~15)  (16~23) (20~27)
    """
    b, c, t, h, w = noise_shape
    base_z0 = model.encode_first_stage(base_videos)
    unit_length = model.temporal_length
    n_base_frames = base_videos.shape[2]
    n_refs = len(model.cond_frames)
    sliding_steps = (n_base_frames - 1) // (n_refs - 1)
    sliding_steps = (
        sliding_steps + 1 if (n_base_frames - 1) % (n_refs - 1) > 0 else sliding_steps
    )

    cond_mask = model.cond_mask.to("cuda")
    proxy_z0 = torch.zeros((b, c, unit_length, h, w), dtype=torch.float32).to("cuda")
    batch_samples = None
    last_offset = None
    for idx in range(sliding_steps):
        base_idx = idx * (n_refs - 1)
        # check index overflow
        if base_idx + n_refs > n_base_frames:
            last_offset = base_idx - (n_base_frames - n_refs)
            base_idx = n_base_frames - n_refs
        cond_z0 = base_z0[:, :, base_idx : base_idx + n_refs, :, :]
        proxy_z0[:, :, model.cond_frames, :, :] = cond_z0

        if "c_concat" in cond:
            c_cat, text_emb = cond["c_concat"][0], cond["c_crossattn"][0]
            episode_idx = idx * unit_length
            if last_offset is not None:
                episode_idx = episode_idx - last_offset * base_stride
            cond_idx = {
                "c_concat": [
                    c_cat[:, :, episode_idx : episode_idx + unit_length, :, :]
                ],
                "c_crossattn": [text_emb],
            }
        else:
            cond_idx = cond
        noise_shape_idx = [b, c, unit_length, h, w]
        # batch, <samples>, c, t, h, w
        batch_idx = batch_ddim_sampling(
            model,
            cond_idx,
            noise_shape_idx,
            n_samples,
            ddim_steps,
            ddim_eta,
            cfg_scale,
            temporal_cfg_scale,
            mask=cond_mask,
            x0=proxy_z0,
            **kwargs,
        )

        if batch_samples is None:
            batch_samples = batch_idx
        else:
            # b,s,c,t,h,w
            if last_offset is None:
                batch_samples = torch.cat(
                    [batch_samples[:, :, :, :-1, :, :], batch_idx], dim=3
                )
            else:
                batch_samples = torch.cat(
                    [
                        batch_samples[:, :, :, :-1, :, :],
                        batch_idx[:, :, :, last_offset * base_stride :, :, :],
                    ],
                    dim=3,
                )

    return batch_samples


def get_filelist(data_dir, ext="*"):
    file_list = glob.glob(os.path.join(data_dir, "*.%s" % ext))
    file_list.sort()
    return file_list


def get_dirlist(path):
    list = []
    if os.path.exists(path):
        files = os.listdir(path)
        for file in files:
            m = os.path.join(path, file)
            if os.path.isdir(m):
                list.append(m)
    list.sort()
    return list


def load_model_checkpoint(model, ckpt, adapter_ckpt=None):
    def load_checkpoint(model, ckpt, full_strict):
        state_dict = torch.load(ckpt, map_location="cpu", weights_only=True)
        try:
            # deepspeed
            new_pl_sd = OrderedDict()
            for key in state_dict["module"].keys():
                new_pl_sd[key[16:]] = state_dict["module"][key]
            model.load_state_dict(new_pl_sd, strict=full_strict)
        except:
            if "state_dict" in list(state_dict.keys()):
                state_dict = state_dict["state_dict"]
            model.load_state_dict(state_dict, strict=full_strict)
        return model

    if adapter_ckpt:
        # main model
        load_checkpoint(model, ckpt, full_strict=False)
        print(">>> model checkpoint loaded.")
        # adapter
        state_dict = torch.load(adapter_ckpt, map_location="cpu")
        if "state_dict" in list(state_dict.keys()):
            state_dict = state_dict["state_dict"]
        model.adapter.load_state_dict(state_dict, strict=True)
        print(">>> adapter checkpoint loaded.")
    else:
        load_checkpoint(model, ckpt, full_strict=False)
        print(">>> model checkpoint loaded.")
    return model


def load_prompts(prompt_file):
    f = open(prompt_file, "r")
    prompt_list = []
    for idx, line in enumerate(f.readlines()):
        l = line.strip()
        if len(l) != 0:
            prompt_list.append(l)
        f.close()
    return prompt_list


def load_camera_poses(filepath_list, video_frames=16):
    pose_list = []
    for filepath in filepath_list:
        with open(filepath, "r") as f:
            pose = json.load(f)
        pose = np.array(pose)  # [t, 12]
        pose = torch.tensor(pose).float()  # [t, 12]
        assert (
            pose.shape[0] == video_frames
        ), f"conditional pose frames Not matching the target frames [{video_frames}]."
        pose_list.append(pose)
    batch_poses = torch.stack(pose_list, dim=0)
    # shape [b,t,12,1]
    return batch_poses[..., None]


def save_videos(
    batch_tensors: torch.Tensor, save_dir: str, filenames: list[str], fps: int = 10
):
    # b,samples,t,c,h,w
    n_samples = batch_tensors.shape[1]
    for idx, vid_tensor in enumerate(batch_tensors):
        video = vid_tensor.detach().cpu()
        video = torch.clamp(video.float(), -1.0, 1.0)
        video = video.permute(1, 0, 2, 3, 4)  # t,n,c,h,w
        frame_grids = [
            torchvision.utils.make_grid(framesheet, nrow=int(n_samples))
            for framesheet in video
        ]  # [3, 1*h, n*w]
        # stack in temporal dim [t, 3, n*h, w]
        grid = torch.stack(frame_grids, dim=0)
        grid = (grid + 1.0) / 2.0
        grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
        savepath = os.path.join(save_dir, f"{filenames[idx]}.mp4")
        torchvision.io.write_video(
            savepath, grid, fps=fps, video_codec="h264", options={"crf": "10"}
        )