"llm/git@developer.sourcefind.cn:orangecat/ollama.git" did not exist on "f4bf1d514f537af9166f72fa00feda04556fc3d5"
Commit 32898938 authored by chenpangpang's avatar chenpangpang
Browse files

feat: 修复bug; 下载模型先更新huggingface-hub

parent 0a1fba1c
...@@ -4,6 +4,7 @@ ARG IMAGE_UPPER=Kolors-FaceID ...@@ -4,6 +4,7 @@ ARG IMAGE_UPPER=Kolors-FaceID
ARG BRANCH=gpu ARG BRANCH=gpu
RUN cd /root && git clone -b $BRANCH http://developer.hpccube.com/codes/chenpangpang/$IMAGE.git RUN cd /root && git clone -b $BRANCH http://developer.hpccube.com/codes/chenpangpang/$IMAGE.git
WORKDIR /root/$IMAGE/$IMAGE_UPPER WORKDIR /root/$IMAGE/$IMAGE_UPPER
RUN apt-get update && apt-get install -y gcc g++
RUN pip install -r requirements.txt && \ RUN pip install -r requirements.txt && \
pip install onnxruntime-gpu==1.18.0 --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/ pip install onnxruntime-gpu==1.18.0 --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
...@@ -17,6 +18,7 @@ COPY chenyh/$IMAGE/frpc_linux_amd64_v0.2 /opt/conda/lib/python3.10/site-packages ...@@ -17,6 +18,7 @@ COPY chenyh/$IMAGE/frpc_linux_amd64_v0.2 /opt/conda/lib/python3.10/site-packages
RUN chmod +x /opt/conda/lib/python3.10/site-packages/gradio/frpc_linux_amd64_v0.2 RUN chmod +x /opt/conda/lib/python3.10/site-packages/gradio/frpc_linux_amd64_v0.2
COPY chenyh/$IMAGE/Kwai-Kolors/Kolors /root/$IMAGE_UPPER/Kwai-Kolors/Kolors COPY chenyh/$IMAGE/Kwai-Kolors/Kolors /root/$IMAGE_UPPER/Kwai-Kolors/Kolors
COPY chenyh/$IMAGE/Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus /root/$IMAGE_UPPER/Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus COPY chenyh/$IMAGE/Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus /root/$IMAGE_UPPER/Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus
RUN apt-get update && apt install -y libgl1-mesa-glx libglib2.0-dev
COPY --from=base /opt/conda/lib/python3.10/site-packages /opt/conda/lib/python3.10/site-packages COPY --from=base /opt/conda/lib/python3.10/site-packages /opt/conda/lib/python3.10/site-packages
COPY --from=base /root/$IMAGE/$IMAGE_UPPER /root/$IMAGE_UPPER COPY --from=base /root/$IMAGE/$IMAGE_UPPER /root/$IMAGE_UPPER
COPY --from=base /root/$IMAGE/启动器.ipynb /root/$IMAGE/start.sh /root/ COPY --from=base /root/$IMAGE/启动器.ipynb /root/$IMAGE/start.sh /root/
\ No newline at end of file
import spaces
import random import random
import torch import torch
import cv2 import cv2
...@@ -7,7 +6,7 @@ import gradio as gr ...@@ -7,7 +6,7 @@ import gradio as gr
import numpy as np import numpy as np
import os import os
from huggingface_hub import snapshot_download from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer from kolors.models.tokenization_chatglm import ChatGLMTokenizer
...@@ -18,7 +17,6 @@ from PIL import Image ...@@ -18,7 +17,6 @@ from PIL import Image
from insightface.app import FaceAnalysis from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image from insightface.data import get_image as ins_get_image
device = "cuda" device = "cuda"
ckpt_dir = "Kwai-Kolors/Kolors" ckpt_dir = "Kwai-Kolors/Kolors"
ckpt_dir_faceid = "Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus" ckpt_dir_faceid = "Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus"
...@@ -28,25 +26,28 @@ tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') ...@@ -28,25 +26,28 @@ tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True) clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336',
ignore_mismatched_sizes=True)
clip_image_encoder.to(device) clip_image_encoder.to(device)
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336) clip_image_processor = CLIPImageProcessor(size=336, crop_size=336)
pipe = StableDiffusionXLPipeline( pipe = StableDiffusionXLPipeline(
vae = vae, vae=vae,
text_encoder = text_encoder, text_encoder=text_encoder,
tokenizer = tokenizer, tokenizer=tokenizer,
unet = unet, unet=unet,
scheduler = scheduler, scheduler=scheduler,
face_clip_encoder = clip_image_encoder, face_clip_encoder=clip_image_encoder,
face_clip_processor = clip_image_processor, face_clip_processor=clip_image_processor,
force_zeros_for_empty_prompt = False, force_zeros_for_empty_prompt=False,
) )
class FaceInfoGenerator(): class FaceInfoGenerator():
def __init__(self, root_dir = "./.insightface/"): def __init__(self, root_dir="./.insightface/"):
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) self.app = FaceAnalysis(name='antelopev2', root=root_dir,
self.app.prepare(ctx_id = 0, det_size = (640, 640)) providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app.prepare(ctx_id=0, det_size=(640, 640))
def get_faceinfo_one_img(self, face_image): def get_faceinfo_one_img(self, face_image):
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
...@@ -54,12 +55,14 @@ class FaceInfoGenerator(): ...@@ -54,12 +55,14 @@ class FaceInfoGenerator():
if len(face_info) == 0: if len(face_info) == 0:
face_info = None face_info = None
else: else:
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[
-1] # only use the maximum face
return face_info return face_info
def face_bbox_to_square(bbox): def face_bbox_to_square(bbox):
## l, t, r, b to square l, t, r, b ## l, t, r, b to square l, t, r, b
l,t,r,b = bbox l, t, r, b = bbox
cent_x = (l + r) / 2 cent_x = (l + r) / 2
cent_y = (t + b) / 2 cent_y = (t + b) / 2
w, h = r - l, b - t w, h = r - l, b - t
...@@ -72,27 +75,28 @@ def face_bbox_to_square(bbox): ...@@ -72,27 +75,28 @@ def face_bbox_to_square(bbox):
return [l0, t0, r0, b0] return [l0, t0, r0, b0]
MAX_SEED = np.iinfo(np.int32).max MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024 MAX_IMAGE_SIZE = 1024
face_info_generator = FaceInfoGenerator() face_info_generator = FaceInfoGenerator()
@spaces.GPU
def infer(prompt, def infer(prompt,
image = None, image=None,
negative_prompt = "nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯", negative_prompt="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
seed = 66, seed=66,
randomize_seed = False, randomize_seed=False,
guidance_scale = 5.0, guidance_scale=5.0,
num_inference_steps = 50 num_inference_steps=50
): ):
if randomize_seed: if randomize_seed:
seed = random.randint(0, MAX_SEED) seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed) generator = torch.Generator().manual_seed(seed)
global pipe global pipe
pipe = pipe.to(device) pipe = pipe.to(device)
pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device = device) pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device=device)
scale = 0.8 scale = 0.8
pipe.set_face_fidelity_scale(scale) pipe.set_face_fidelity_scale(scale)
face_info = face_info_generator.get_faceinfo_one_img(image) face_info = face_info_generator.get_faceinfo_one_img(image)
face_bbox_square = face_bbox_to_square(face_info["bbox"]) face_bbox_square = face_bbox_to_square(face_info["bbox"])
...@@ -100,19 +104,19 @@ def infer(prompt, ...@@ -100,19 +104,19 @@ def infer(prompt,
crop_image = crop_image.resize((336, 336)) crop_image = crop_image.resize((336, 336))
crop_image = [crop_image] crop_image = [crop_image]
face_embeds = torch.from_numpy(np.array([face_info["embedding"]])) face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
face_embeds = face_embeds.to(device, dtype = torch.float16) face_embeds = face_embeds.to(device, dtype=torch.float16)
image = pipe( image = pipe(
prompt = prompt, prompt=prompt,
negative_prompt = negative_prompt, negative_prompt=negative_prompt,
height = 1024, height=1024,
width = 1024, width=1024,
num_inference_steps= num_inference_steps, num_inference_steps=num_inference_steps,
guidance_scale = guidance_scale, guidance_scale=guidance_scale,
num_images_per_prompt = 1, num_images_per_prompt=1,
generator = generator, generator=generator,
face_crop_image = crop_image, face_crop_image=crop_image,
face_insightface_embeds = face_embeds face_insightface_embeds=face_embeds
).images[0] ).images[0]
return image, seed return image, seed
...@@ -120,11 +124,11 @@ def infer(prompt, ...@@ -120,11 +124,11 @@ def infer(prompt,
examples = [ examples = [
["穿着晚礼服,在星光下的晚宴场景中,烛光闪闪,整个场景洋溢着浪漫而奢华的氛围", "image/image1.png"], ["穿着晚礼服,在星光下的晚宴场景中,烛光闪闪,整个场景洋溢着浪漫而奢华的氛围", "image/image1.png"],
["西部牛仔,牛仔帽,荒野大镖客,背景是西部小镇,仙人掌,,日落余晖, 暖色调, 使用XT4胶片拍摄, 噪点, 晕影, 柯达胶卷,复古", "image/image2.png"] ["西部牛仔,牛仔帽,荒野大镖客,背景是西部小镇,仙人掌,,日落余晖, 暖色调, 使用XT4胶片拍摄, 噪点, 晕影, 柯达胶卷,复古",
"image/image2.png"]
] ]
css = """
css="""
#col-left { #col-left {
margin: 0 auto; margin: 0 auto;
max-width: 600px; max-width: 600px;
...@@ -138,11 +142,13 @@ css=""" ...@@ -138,11 +142,13 @@ css="""
} }
""" """
def load_description(fp): def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f: with open(fp, 'r', encoding='utf-8') as f:
content = f.read() content = f.read()
return content return content
with gr.Blocks(css=css) as Kolors: with gr.Blocks(css=css) as Kolors:
gr.HTML(load_description("assets/title.md")) gr.HTML(load_description("assets/title.md"))
with gr.Row(): with gr.Row():
...@@ -186,24 +192,23 @@ with gr.Blocks(css=css) as Kolors: ...@@ -186,24 +192,23 @@ with gr.Blocks(css=css) as Kolors:
) )
with gr.Row(): with gr.Row():
button = gr.Button("Run", elem_id="button") button = gr.Button("Run", elem_id="button")
with gr.Column(elem_id="col-right"): with gr.Column(elem_id="col-right"):
result = gr.Image(label="Result", show_label=False) result = gr.Image(label="Result", show_label=False)
seed_used = gr.Number(label="Seed Used") seed_used = gr.Number(label="Seed Used")
with gr.Row(): with gr.Row():
gr.Examples( gr.Examples(
fn = infer, fn=infer,
examples = examples, examples=examples,
inputs = [prompt, image], inputs=[prompt, image],
outputs = [result, seed_used], outputs=[result, seed_used],
) )
button.click( button.click(
fn = infer, fn=infer,
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps], inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs = [result, seed_used] outputs=[result, seed_used]
) )
Kolors.queue().launch(server_name="0.0.0.0", share=True) Kolors.queue().launch(server_name="0.0.0.0", share=True)
...@@ -8,6 +8,8 @@ model_list = [ ...@@ -8,6 +8,8 @@ model_list = [
"Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus" "Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus"
] ]
os.system("pip install -U huggingface-hub")
for model_path in model_list: for model_path in model_list:
os.system( os.system(
f"huggingface-cli download --resume-download {model_path} --local-dir ./{model_path} --local-dir-use-symlinks False") f"huggingface-cli download --resume-download {model_path} --local-dir ./{model_path} --local-dir-use-symlinks False")
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment