app.py 7.05 KB
Newer Older
chenpangpang's avatar
chenpangpang committed
1
2
3
4
5
6
7
8
import random
import torch
import cv2
import insightface
import gradio as gr
import numpy as np
import os
from huggingface_hub import snapshot_download
9
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
chenpangpang's avatar
chenpangpang committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image

device = "cuda"
ckpt_dir = "Kwai-Kolors/Kolors"
ckpt_dir_faceid = "Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus"

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
29
30
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336',
                                                                   ignore_mismatched_sizes=True)
chenpangpang's avatar
chenpangpang committed
31
clip_image_encoder.to(device)
32
clip_image_processor = CLIPImageProcessor(size=336, crop_size=336)
chenpangpang's avatar
chenpangpang committed
33
34

pipe = StableDiffusionXLPipeline(
35
36
37
38
39
40
41
42
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    face_clip_encoder=clip_image_encoder,
    face_clip_processor=clip_image_processor,
    force_zeros_for_empty_prompt=False,
chenpangpang's avatar
chenpangpang committed
43
44
)

45

chenpangpang's avatar
chenpangpang committed
46
class FaceInfoGenerator():
47
48
49
50
    def __init__(self, root_dir="./.insightface/"):
        self.app = FaceAnalysis(name='antelopev2', root=root_dir,
                                providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.app.prepare(ctx_id=0, det_size=(640, 640))
chenpangpang's avatar
chenpangpang committed
51
52
53
54
55
56
57

    def get_faceinfo_one_img(self, face_image):
        face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))

        if len(face_info) == 0:
            face_info = None
        else:
58
59
            face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[
                -1]  # only use the maximum face
chenpangpang's avatar
chenpangpang committed
60
61
        return face_info

62

chenpangpang's avatar
chenpangpang committed
63
64
def face_bbox_to_square(bbox):
    ## l, t, r, b to square l, t, r, b
65
    l, t, r, b = bbox
chenpangpang's avatar
chenpangpang committed
66
67
68
69
70
71
72
73
74
75
76
77
    cent_x = (l + r) / 2
    cent_y = (t + b) / 2
    w, h = r - l, b - t
    r = max(w, h) / 2

    l0 = cent_x - r
    r0 = cent_x + r
    t0 = cent_y - r
    b0 = cent_y + r

    return [l0, t0, r0, b0]

78

chenpangpang's avatar
chenpangpang committed
79
80
81
82
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
face_info_generator = FaceInfoGenerator()

83
84
85
86
87
88
89
90
91

def infer(prompt,
          image=None,
          negative_prompt="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
          seed=66,
          randomize_seed=False,
          guidance_scale=5.0,
          num_inference_steps=50
          ):
chenpangpang's avatar
chenpangpang committed
92
93
94
95
96
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    global pipe
    pipe = pipe.to(device)
97
    pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device=device)
chenpangpang's avatar
chenpangpang committed
98
    scale = 0.8
99
    pipe.set_face_fidelity_scale(scale)
chenpangpang's avatar
chenpangpang committed
100
101
102
103
104
105
106

    face_info = face_info_generator.get_faceinfo_one_img(image)
    face_bbox_square = face_bbox_to_square(face_info["bbox"])
    crop_image = image.crop(face_bbox_square)
    crop_image = crop_image.resize((336, 336))
    crop_image = [crop_image]
    face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
107
    face_embeds = face_embeds.to(device, dtype=torch.float16)
chenpangpang's avatar
chenpangpang committed
108
109

    image = pipe(
110
111
112
113
114
115
116
117
118
119
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=1024,
        width=1024,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
        face_crop_image=crop_image,
        face_insightface_embeds=face_embeds
chenpangpang's avatar
chenpangpang committed
120
121
122
123
124
125
126
    ).images[0]

    return image, seed


examples = [
    ["穿着晚礼服,在星光下的晚宴场景中,烛光闪闪,整个场景洋溢着浪漫而奢华的氛围", "image/image1.png"],
127
128
    ["西部牛仔,牛仔帽,荒野大镖客,背景是西部小镇,仙人掌,,日落余晖, 暖色调, 使用XT4胶片拍摄, 噪点, 晕影, 柯达胶卷,复古",
     "image/image2.png"]
chenpangpang's avatar
chenpangpang committed
129
130
]

131
css = """
chenpangpang's avatar
chenpangpang committed
132
133
134
135
136
137
138
139
140
141
142
143
144
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
#button {
    color: blue;
}
"""

145

chenpangpang's avatar
chenpangpang committed
146
147
148
149
150
def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

151

chenpangpang's avatar
chenpangpang committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
with gr.Blocks(css=css) as Kolors:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(label="Image", type="pil")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=5.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=25,
                    )
            with gr.Row():
                button = gr.Button("Run", elem_id="button")
195

chenpangpang's avatar
chenpangpang committed
196
197
198
        with gr.Column(elem_id="col-right"):
            result = gr.Image(label="Result", show_label=False)
            seed_used = gr.Number(label="Seed Used")
199

chenpangpang's avatar
chenpangpang committed
200
201
    with gr.Row():
        gr.Examples(
202
203
204
205
206
            fn=infer,
            examples=examples,
            inputs=[prompt, image],
            outputs=[result, seed_used],
        )
chenpangpang's avatar
chenpangpang committed
207
208

    button.click(
209
210
211
        fn=infer,
        inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
        outputs=[result, seed_used]
chenpangpang's avatar
chenpangpang committed
212
213
214
    )

Kolors.queue().launch(server_name="0.0.0.0", share=True)