app.py 18.8 KB
Newer Older
chenpangpang's avatar
chenpangpang committed
1
import sys
2

chenpangpang's avatar
chenpangpang committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
sys.path.append('./')

from typing import Tuple

import os
import cv2
import math
import torch
import random
import numpy as np
import argparse

import PIL
from PIL import Image

import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import LCMScheduler

from huggingface_hub import hf_hub_download

import insightface
from insightface.app import FaceAnalysis

from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline
from model_util import load_models_xl, get_torch_device, torch_gc

import gradio as gr

# global variable
MAX_SEED = np.iinfo(np.int32).max
device = get_torch_device()
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Watercolor"

# Load face encoder
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# Path to InstantID models
face_adapter = f'./checkpoints/ip-adapter.bin'
controlnet_path = f'./checkpoints/ControlNetModel'

# Load pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)


53
def main(pretrained_model_name_or_path="wangqixun/YamerMIX_v8", enable_lcm_arg=False):
chenpangpang's avatar
chenpangpang committed
54
55
    if pretrained_model_name_or_path.endswith(
            ".ckpt"
56
57
58
59
60
61
    ) or pretrained_model_name_or_path.endswith(".safetensors"):
        scheduler_kwargs = hf_hub_download(
            repo_id="wangqixun/YamerMIX_v8",
            subfolder="scheduler",
            filename="scheduler_config.json",
        )
chenpangpang's avatar
chenpangpang committed
62

63
64
65
66
67
        (tokenizers, text_encoders, unet, _, vae) = load_models_xl(
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            scheduler_name=None,
            weight_dtype=dtype,
        )
chenpangpang's avatar
chenpangpang committed
68

69
70
71
72
73
74
75
76
77
78
79
        scheduler = diffusers.EulerDiscreteScheduler.from_config(scheduler_kwargs)
        pipe = StableDiffusionXLInstantIDPipeline(
            vae=vae,
            text_encoder=text_encoders[0],
            text_encoder_2=text_encoders[1],
            tokenizer=tokenizers[0],
            tokenizer_2=tokenizers[1],
            unet=unet,
            scheduler=scheduler,
            controlnet=controlnet,
        ).to(device)
chenpangpang's avatar
chenpangpang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    else:
        pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
            pretrained_model_name_or_path,
            controlnet=controlnet,
            torch_dtype=dtype,
            safety_checker=None,
            feature_extractor=None,
        ).to(device)

        pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)

    pipe.load_ip_adapter_instantid(face_adapter)
    # load and disable LCM
    pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
    pipe.disable_lora()
96

chenpangpang's avatar
chenpangpang committed
97
98
99
100
101
102
103
104
105
106
107
    def toggle_lcm_ui(value):
        if value:
            return (
                gr.update(minimum=0, maximum=100, step=1, value=5),
                gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5)
            )
        else:
            return (
                gr.update(minimum=5, maximum=100, step=1, value=30),
                gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5)
            )
108

chenpangpang's avatar
chenpangpang committed
109
110
111
112
    def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        return seed
113

chenpangpang's avatar
chenpangpang committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    def remove_tips():
        return gr.update(visible=False)

    def get_example():
        case = [
            [
                './examples/yann-lecun_resize.jpg',
                "a man",
                "Snow",
                "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
            ],
            [
                './examples/musk_resize.jpeg',
                "a man",
                "Mars",
                "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
            ],
            [
                './examples/sam_resize.png',
                "a man",
                "Jungle",
                "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
            ],
            [
                './examples/schmidhuber_resize.png',
                "a man",
                "Neon",
                "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
            ],
            [
                './examples/kaifu_resize.png',
                "a man",
                "Vibrant Color",
                "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
            ],
        ]
        return case

    def run_for_examples(face_file, prompt, style, negative_prompt):
        return generate_image(face_file, None, prompt, negative_prompt, style, 30, 0.8, 0.8, 5, 42, False, True)

    def convert_from_cv2_to_image(img: np.ndarray) -> Image:
        return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

    def convert_from_image_to_cv2(img: Image) -> np.ndarray:
        return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

161
    def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
chenpangpang's avatar
chenpangpang committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        stickwidth = 4
        limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
        kps = np.array(kps)

        w, h = image_pil.size
        out_img = np.zeros([h, w, 3])

        for i in range(len(limbSeq)):
            index = limbSeq[i]
            color = color_list[index[0]]

            x = kps[index][:, 0]
            y = kps[index][:, 1]
            length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
177
178
            polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0,
                                       360, 1)
chenpangpang's avatar
chenpangpang committed
179
180
181
182
183
184
185
186
187
188
189
            out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
        out_img = (out_img * 0.6).astype(np.uint8)

        for idx_kp, kp in enumerate(kps):
            color = color_list[idx_kp]
            x, y = kp
            out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)

        out_img_pil = Image.fromarray(out_img.astype(np.uint8))
        return out_img_pil

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    def resize_img(input_image, max_side=1280, min_side=1024, size=None,
                   pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64):

        w, h = input_image.size
        if size is not None:
            w_resize_new, h_resize_new = size
        else:
            ratio = min_side / min(h, w)
            w, h = round(ratio * w), round(ratio * h)
            ratio = max_side / max(h, w)
            input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
            w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
            h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
        input_image = input_image.resize([w_resize_new, h_resize_new], mode)

        if pad_to_max_side:
            res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
            offset_x = (max_side - w_resize_new) // 2
            offset_y = (max_side - h_resize_new) // 2
            res[offset_y:offset_y + h_resize_new, offset_x:offset_x + w_resize_new] = np.array(input_image)
            input_image = Image.fromarray(res)
        return input_image
chenpangpang's avatar
chenpangpang committed
212
213
214
215
216

    def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
        return p.replace("{prompt}", positive), n + ' ' + negative

217
218
219
    def generate_image(face_image_path, pose_image_path, prompt, negative_prompt, style_name, num_steps,
                       identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, enable_LCM,
                       enhance_face_region, progress=gr.Progress(track_tqdm=True)):
chenpangpang's avatar
chenpangpang committed
220
221
222
223
224
225
        if enable_LCM:
            pipe.enable_lora()
            pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
        else:
            pipe.disable_lora()
            pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
226

chenpangpang's avatar
chenpangpang committed
227
228
        if face_image_path is None:
            raise gr.Error(f"Cannot find any input face image! Please upload the face image")
229

chenpangpang's avatar
chenpangpang committed
230
231
        if prompt is None:
            prompt = "a person"
232

chenpangpang's avatar
chenpangpang committed
233
234
        # apply the style template
        prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
235

chenpangpang's avatar
chenpangpang committed
236
237
238
239
        face_image = load_image(face_image_path)
        face_image = resize_img(face_image)
        face_image_cv2 = convert_from_image_to_cv2(face_image)
        height, width, _ = face_image_cv2.shape
240

chenpangpang's avatar
chenpangpang committed
241
242
        # Extract face features
        face_info = app.get(face_image_cv2)
243

chenpangpang's avatar
chenpangpang committed
244
245
        if len(face_info) == 0:
            raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
246
247
248

        face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[
            -1]  # only use the maximum face
chenpangpang's avatar
chenpangpang committed
249
250
        face_emb = face_info['embedding']
        face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
251

chenpangpang's avatar
chenpangpang committed
252
253
254
255
        if pose_image_path is not None:
            pose_image = load_image(pose_image_path)
            pose_image = resize_img(pose_image)
            pose_image_cv2 = convert_from_image_to_cv2(pose_image)
256

chenpangpang's avatar
chenpangpang committed
257
            face_info = app.get(pose_image_cv2)
258

chenpangpang's avatar
chenpangpang committed
259
260
            if len(face_info) == 0:
                raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
261

chenpangpang's avatar
chenpangpang committed
262
263
            face_info = face_info[-1]
            face_kps = draw_kps(pose_image, face_info['kps'])
264

chenpangpang's avatar
chenpangpang committed
265
266
267
268
269
270
271
272
273
274
            width, height = face_kps.size

        if enhance_face_region:
            control_mask = np.zeros([height, width, 3])
            x1, y1, x2, y2 = face_info["bbox"]
            x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
            control_mask[y1:y2, x1:x2] = 255
            control_mask = Image.fromarray(control_mask.astype(np.uint8))
        else:
            control_mask = None
275

chenpangpang's avatar
chenpangpang committed
276
        generator = torch.Generator(device=device).manual_seed(seed)
277

chenpangpang's avatar
chenpangpang committed
278
279
        print("Start inference...")
        print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
280

chenpangpang's avatar
chenpangpang committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        pipe.set_ip_adapter_scale(adapter_strength_ratio)
        images = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image_embeds=face_emb,
            image=face_kps,
            control_mask=control_mask,
            controlnet_conditioning_scale=float(identitynet_strength_ratio),
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale,
            height=height,
            width=width,
            generator=generator
        ).images

        return images[0], gr.update(visible=True)

    ### Description
    title = r"""
300
    <h1 align="center">InstantID: 1张照片,无需训练,秒级生成个人写真</h1>
chenpangpang's avatar
chenpangpang committed
301
302
303
    """

    description = r"""
304
305
306
307
308
309
310
    <b>官方Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: 1张照片,无需训练,秒级生成个人写真</b></a>.<br>
    用户指南:<br>
    1. 上传人物图片。 对于多人图像,我们只会检测最大的脸部。 确保脸部不要太小,并且没有明显遮挡或模糊。
    2. (可选)上传另一个人的图像作为参考姿势。 如果没有上传,我们将使用第一张图像来提取姿势。 如果您在步骤1中使用了裁剪后的脸部,建议上传它以提取新的姿势。
    3. (可选)输入文本prompt提示词,就像所有文生图应用中所做的那样.
    4. 点击 <b>Submit</b> 按钮开始定制.
    5. 分享美图给你的好友吧, enjoy😊!
chenpangpang's avatar
chenpangpang committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    """

    article = r"""
    ---
    📝 **Citation**
    <br>
    If our work is helpful for your research or applications, please cite us via:
    ```bibtex
    @article{wang2024instantid,
    title={InstantID: Zero-shot Identity-Preserving Generation in Seconds},
    author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony},
    journal={arXiv preprint arXiv:2401.07519},
    year={2024}
    }
    ```
    📧 **Contact**
    <br>
    If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>.
    """

    tips = r"""
    ### Usage tips of InstantID
    1. If you're not satisfied with the similarity, try increasing the weight of "IdentityNet Strength" and "Adapter Strength."    
    2. If you feel that the saturation is too high, first decrease the Adapter strength. If it remains too high, then decrease the IdentityNet strength.
    3. If you find that text control is not as expected, decrease Adapter strength.
    4. If you find that realistic style is not good enough, go for our Github repo and use a more realistic base model.
    """

    css = '''
    .gradio-container {width: 85% !important}
    '''
    with gr.Blocks(css=css) as demo:

        # description
        gr.Markdown(title)
        gr.Markdown(description)

        with gr.Row():
            with gr.Column():
                # upload face image
                face_file = gr.Image(label="Upload a photo of your face", type="filepath")

                # optional: upload a reference pose image
                pose_file = gr.Image(label="Upload a reference pose image (optional)", type="filepath")
355

chenpangpang's avatar
chenpangpang committed
356
357
                # prompt
                prompt = gr.Textbox(label="Prompt",
358
359
360
361
                                    info="Give simple prompt is enough to achieve good face fidelity",
                                    placeholder="A photo of a person",
                                    value="")

chenpangpang's avatar
chenpangpang committed
362
                submit = gr.Button("Submit", variant="primary")
363

chenpangpang's avatar
chenpangpang committed
364
365
366
367
368
                enable_LCM = gr.Checkbox(
                    label="Enable Fast Inference with LCM", value=enable_lcm_arg,
                    info="LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces",
                )
                style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
369

chenpangpang's avatar
chenpangpang committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
                # strength
                identitynet_strength_ratio = gr.Slider(
                    label="IdentityNet strength (for fidelity)",
                    minimum=0,
                    maximum=1.5,
                    step=0.05,
                    value=0.80,
                )
                adapter_strength_ratio = gr.Slider(
                    label="Image adapter strength (for detail)",
                    minimum=0,
                    maximum=1.5,
                    step=0.05,
                    value=0.80,
                )
385

chenpangpang's avatar
chenpangpang committed
386
387
                with gr.Accordion(open=False, label="Advanced Options"):
                    negative_prompt = gr.Textbox(
388
                        label="Negative Prompt",
chenpangpang's avatar
chenpangpang committed
389
390
391
                        placeholder="low quality",
                        value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
                    )
392
                    num_steps = gr.Slider(
chenpangpang's avatar
chenpangpang committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
                        label="Number of sample steps",
                        minimum=20,
                        maximum=100,
                        step=1,
                        value=5 if enable_lcm_arg else 30,
                    )
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.1,
                        maximum=10.0,
                        step=0.1,
                        value=0 if enable_lcm_arg else 5,
                    )
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)

            with gr.Column():
                gallery = gr.Image(label="Generated Images")
418
                usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips, visible=False)
chenpangpang's avatar
chenpangpang committed
419
420
421

            submit.click(
                fn=remove_tips,
422
                outputs=usage_tips,
chenpangpang's avatar
chenpangpang committed
423
424
425
426
427
428
429
430
            ).then(
                fn=randomize_seed_fn,
                inputs=[seed, randomize_seed],
                outputs=seed,
                queue=False,
                api_name=False,
            ).then(
                fn=generate_image,
431
432
                inputs=[face_file, pose_file, prompt, negative_prompt, style, num_steps, identitynet_strength_ratio,
                        adapter_strength_ratio, guidance_scale, seed, enable_LCM, enhance_face_region],
chenpangpang's avatar
chenpangpang committed
433
434
                outputs=[gallery, usage_tips]
            )
435

chenpangpang's avatar
chenpangpang committed
436
437
438
439
440
441
442
443
444
445
            enable_LCM.input(fn=toggle_lcm_ui, inputs=[enable_LCM], outputs=[num_steps, guidance_scale], queue=False)

        gr.Examples(
            examples=get_example(),
            inputs=[face_file, prompt, style, negative_prompt],
            run_on_click=True,
            fn=run_for_examples,
            outputs=[gallery, usage_tips],
            cache_examples=True,
        )
446

chenpangpang's avatar
chenpangpang committed
447
448
        gr.Markdown(article)

449
    demo.queue().launch(server_name='0.0.0.0', share=True)
450

chenpangpang's avatar
chenpangpang committed
451
452
453
454
455
456
457
458
459

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--pretrained_model_name_or_path", type=str, default="wangqixun/YamerMIX_v8")
    parser.add_argument("--enable_LCM", type=bool, default=os.environ.get("ENABLE_LCM", False))

    args = parser.parse_args()

    main(args.pretrained_model_name_or_path, args.enable_LCM)