text.py 4.79 KB
Newer Older
lipengfei's avatar
lipengfei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import sys
import subprocess
import re
import paddle

def check_version():
    try:
        version = paddle.__version__
        version_pattern = r"(\d+)\.(\d+)\.(\d+)"
        match = re.match(version_pattern, version)
        major, minor, patch_version = map(int, match.groups())
        return major, minor
    except ImportError:
        print("PaddlePaddle is not installed.")
        sys.exit(1)

major, minor = check_version()

# PaddlePaddle 2.4及以上版本
if major >= 3 or (major == 2 and minor >= 4):
    import os
    import paddle
    from paddlenlp.transformers import AutoModelForCausalLM, AutoTokenizer

    model = AutoModelForCausalLM.from_pretrained("gpt2")
    tokenizer = AutoTokenizer.from_pretrained("gpt2")

    prompt = "Once upon a time"
    input_ids = tokenizer(prompt, return_tensors="pd")["input_ids"]

    output_ids = model.generate(
        input_ids=input_ids,
        max_length=50,
        do_sample=True,
        top_k=50,
        top_p=0.95,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

    output_ids = output_ids[0].numpy().flatten()
    generated_text = tokenizer.decode(output_ids, skip_special_tokens=True)
    print("Generated Text: ", generated_text)

# PaddlePaddle 2.0到2.3版本
elif 2 <= major < 3 and 0 <= minor < 4:
    import paddle
    from paddlenlp.transformers import BertTokenizer, BertForSequenceClassification

    model_name = "bert-base-uncased"
    tokenizer = BertTokenizer.from_pretrained(model_name)
    model = BertForSequenceClassification.from_pretrained(model_name, num_classes=2)

    texts = ["PaddlePaddle is an awesome deep learning framework!", "I don't like the weather today."]
    input_ids = []
    token_type_ids = []

    for text in texts:
        encoded_inputs = tokenizer.encode(text, max_seq_len=128, pad_to_max_seq_len=True)
        input_ids.append(encoded_inputs['input_ids'])
        token_type_ids.append(encoded_inputs['token_type_ids'])

    input_ids = paddle.to_tensor(input_ids, dtype='int64')
    token_type_ids = paddle.to_tensor(token_type_ids, dtype='int64')

    with paddle.no_grad():
        logits = model(input_ids, token_type_ids=token_type_ids)
        probs = paddle.nn.functional.softmax(logits, axis=-1)
        predictions = paddle.argmax(probs, axis=-1)

    for text, pred in zip(texts, predictions.numpy()):
        label = "Positive" if pred == 1 else "Negative"
        print(f"Text: {text}\nPrediction: {label}\n")

# PaddlePaddle 2.0以下版本
else:
    import paddle.fluid as fluid
    import numpy as np
    from paddle.fluid.dygraph import Embedding, Linear
    from paddle.fluid.dygraph.base import to_variable
    import paddle.fluid.layers as layers

    class SimpleTextClassifier(fluid.dygraph.Layer):
        def __init__(self, vocab_size, embedding_dim, hidden_size, num_classes):
            super(SimpleTextClassifier, self).__init__()
            self.embedding = Embedding(size=[vocab_size, embedding_dim])
            self.gru_cell = layers.GRUCell(hidden_size=hidden_size,
                                           param_attr=fluid.ParamAttr(initializer=fluid.initializer.XavierInitializer()),
                                           bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(0.0)))
            self.fc = Linear(hidden_size, num_classes)

        def forward(self, x):
            x = self.embedding(x)
            batch_size, seq_len, _ = x.shape
            hidden = fluid.layers.zeros([batch_size, self.gru_cell.hidden_size], dtype='float32')

            for t in range(seq_len):
                step_input = x[:, t, :]
                hidden, _ = self.gru_cell(step_input, hidden)

            logits = self.fc(hidden)
            return logits

    def preprocess_text(text, vocab, seq_len=20):
        text_ids = [vocab.get(word, 0) for word in text.split()]
        text_ids = text_ids[:seq_len] + [0] * (seq_len - len(text_ids))
        return np.array([text_ids], dtype='int64')

    def infer(text, model, vocab, label_list):
        with fluid.dygraph.guard():
            model.eval()
            text_data = preprocess_text(text, vocab)
            text_var = to_variable(text_data)
            logits = model(text_var)
            prediction = layers.softmax(logits)
            predicted_class = np.argmax(prediction.numpy())
            return label_list[predicted_class]

    vocab = {"hello": 1, "world": 2}
    label_list = ["positive", "negative"]
    vocab_size = len(vocab) + 1
    embedding_dim = 128
    hidden_size = 64
    num_classes = len(label_list)

    with fluid.dygraph.guard():
        model = SimpleTextClassifier(vocab_size, embedding_dim, hidden_size, num_classes)
        model.eval()
        text = "hello world"
        predicted_label = infer(text, model, vocab, label_list)
        print(f"Predicted label: {predicted_label}")
print("finish")