"...composable_kernel_onnxruntime.git" did not exist on "b8ba0239021dfdd8e72720c17600c154f24baaaf"
pipeline_vq_diffusion.py 11.7 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright 2022 Microsoft and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, List, Optional, Tuple, Union

import torch

from diffusers import Transformer2DModel, VQModel
from diffusers.schedulers.scheduling_vq_diffusion import VQDiffusionScheduler
from transformers import CLIPTextModel, CLIPTokenizer

from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...utils import logging


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class VQDiffusionPipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-image generation using VQ Diffusion

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vqvae ([`VQModel`]):
            Vector Quantized Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent
            representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. VQ Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        transformer ([`Transformer2DModel`]):
            Conditional transformer to denoise the encoded image latents.
        scheduler ([`VQDiffusionScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
    """

    vqvae: VQModel
    text_encoder: CLIPTextModel
    tokenizer: CLIPTokenizer
    transformer: Transformer2DModel
    scheduler: VQDiffusionScheduler

    def __init__(
        self,
        vqvae: VQModel,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        transformer: Transformer2DModel,
        scheduler: VQDiffusionScheduler,
    ):
        super().__init__()

        self.register_modules(
            vqvae=vqvae,
            transformer=transformer,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            scheduler=scheduler,
        )

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        num_inference_steps: int = 100,
        truncation_rate: float = 1.0,
        num_images_per_prompt: int = 1,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
    ) -> Union[ImagePipelineOutput, Tuple]:
        """
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            truncation_rate (`float`, *optional*, defaults to 1.0 (equivalent to no truncation)):
                Used to "truncate" the predicted classes for x_0 such that the cumulative probability for a pixel is at
                most `truncation_rate`. The lowest probabilities that would increase the cumulative probability above
                `truncation_rate` are set to zero.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            latents (`torch.FloatTensor` of shape (batch), *optional*):
                Pre-generated noisy latents to be used as inputs for image generation. Must be valid embedding indices.
                Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will
                be generated of completely masked latent pixels.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput `] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
        """
        if isinstance(prompt, str):
            batch_size = 1
        elif isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        batch_size = batch_size * num_images_per_prompt

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        # get prompt text embeddings
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids

        if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
            removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )
            text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
        text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]

        # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
        # While CLIP does normalize the pooled output of the text transformer when combining
        # the image and text embeddings, CLIP does not directly normalize the last hidden state.
        #
        # CLIP normalizing the pooled output.
        # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
        text_embeddings = text_embeddings / text_embeddings.norm(dim=-1, keepdim=True)

        # duplicate text embeddings for each generation per prompt
        text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)

        # get the initial completely masked latents unless the user supplied it

        latents_shape = (batch_size, self.transformer.num_latent_pixels)
        if latents is None:
            mask_class = self.transformer.num_vector_embeds - 1
            latents = torch.full(latents_shape, mask_class).to(self.device)
        else:
            if latents.shape != latents_shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
            if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
                raise ValueError(
                    "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"
                    f" {self.transformer.num_vector_embeds - 1} (inclusive)."
                )
            latents = latents.to(self.device)

        # set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=self.device)

        timesteps_tensor = self.scheduler.timesteps.to(self.device)

        sample = latents

        for i, t in enumerate(self.progress_bar(timesteps_tensor)):
            # predict the un-noised image
            # model_output == `log_p_x_0`
            model_output = self.transformer(sample, encoder_hidden_states=text_embeddings, timestep=t).sample

            model_output = self.truncate(model_output, truncation_rate)

            # remove `log(0)`'s (`-inf`s)
            model_output = model_output.clamp(-70)

            # compute the previous noisy sample x_t -> x_t-1
            sample = self.scheduler.step(model_output, timestep=t, sample=sample, generator=generator).prev_sample

            # call the callback, if provided
            if callback is not None and i % callback_steps == 0:
                callback(i, t, sample)

        embedding_channels = self.vqvae.config.vq_embed_dim
        embeddings_shape = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
        embeddings = self.vqvae.quantize.get_codebook_entry(sample, shape=embeddings_shape)
        image = self.vqvae.decode(embeddings, force_not_quantize=True).sample

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)

    def truncate(self, log_p_x_0: torch.FloatTensor, truncation_rate: float) -> torch.FloatTensor:
        """
        Truncates log_p_x_0 such that for each column vector, the total cumulative probability is `truncation_rate` The
        lowest probabilities that would increase the cumulative probability above `truncation_rate` are set to zero.
        """
        sorted_log_p_x_0, indices = torch.sort(log_p_x_0, 1, descending=True)
        sorted_p_x_0 = torch.exp(sorted_log_p_x_0)
        keep_mask = sorted_p_x_0.cumsum(dim=1) < truncation_rate

        # Ensure that at least the largest probability is not zeroed out
        all_true = torch.full_like(keep_mask[:, 0:1, :], True)
        keep_mask = torch.cat((all_true, keep_mask), dim=1)
        keep_mask = keep_mask[:, :-1, :]

        keep_mask = keep_mask.gather(1, indices.argsort(1))

        rv = log_p_x_0.clone()

        rv[~keep_mask] = -torch.inf  # -inf = log(0)

        return rv