pipeline_stable_diffusion.py 48.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Suraj Patil's avatar
Suraj Patil committed
15
import inspect
16
from typing import Any, Callable, Dict, List, Optional, Union
Suraj Patil's avatar
Suraj Patil committed
17
18

import torch
19
from packaging import version
20
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
Suraj Patil's avatar
Suraj Patil committed
21

22
from ...configuration_utils import FrozenDict
23
24
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
Suraj Patil's avatar
Suraj Patil committed
25
from ...models import AutoencoderKL, UNet2DConditionModel
26
from ...models.lora import adjust_lora_scale_text_encoder
Kashif Rasul's avatar
Kashif Rasul committed
27
from ...schedulers import KarrasDiffusionSchedulers
28
29
30
31
32
33
34
35
from ...utils import (
    USE_PEFT_BACKEND,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
Dhruv Nair's avatar
Dhruv Nair committed
36
from ...utils.torch_utils import randn_tensor
37
from ..pipeline_utils import DiffusionPipeline
38
from .pipeline_output import StableDiffusionPipelineOutput
Suraj Patil's avatar
Suraj Patil committed
39
from .safety_checker import StableDiffusionSafetyChecker
Suraj Patil's avatar
Suraj Patil committed
40
41


42
43
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

44
45
46
47
48
49
50
51
52
53
54
55
56
57
EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> image = pipe(prompt).images[0]
        ```
"""

58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used,
            `timesteps` must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
                must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


117
118
119
class StableDiffusionPipeline(
    DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
):
120
121
122
    r"""
    Pipeline for text-to-image generation using Stable Diffusion.

123
124
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
125

126
127
128
129
130
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
131
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
1lint's avatar
1lint committed
132

133
134
    Args:
        vae ([`AutoencoderKL`]):
135
136
137
138
139
140
141
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
142
        scheduler ([`SchedulerMixin`]):
143
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
144
145
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
146
            Classification module that estimates whether generated images could be considered offensive or harmful.
147
148
149
150
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
151
    """
152

153
    model_cpu_offload_seq = "text_encoder->unet->vae"
154
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
155
    _exclude_from_cpu_offload = ["safety_checker"]
156
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
157

Suraj Patil's avatar
Suraj Patil committed
158
159
160
161
162
163
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
Kashif Rasul's avatar
Kashif Rasul committed
164
        scheduler: KarrasDiffusionSchedulers,
Suraj Patil's avatar
Suraj Patil committed
165
        safety_checker: StableDiffusionSafetyChecker,
166
        feature_extractor: CLIPImageProcessor,
167
        image_encoder: CLIPVisionModelWithProjection = None,
168
        requires_safety_checker: bool = True,
Suraj Patil's avatar
Suraj Patil committed
169
170
    ):
        super().__init__()
171
172

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
173
            deprecation_message = (
174
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
Yuta Hayashibe's avatar
Yuta Hayashibe committed
175
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
176
177
178
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
179
                " file"
180
            )
181
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
182
183
184
185
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

186
187
188
189
190
191
192
193
194
195
196
197
198
        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

199
        if safety_checker is None and requires_safety_checker:
200
            logger.warning(
201
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
202
203
204
205
206
207
208
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

209
210
211
212
213
214
        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

215
216
217
218
219
220
221
        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
Pedro Cuenca's avatar
Pedro Cuenca committed
222
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
223
224
225
226
227
228
229
230
231
232
233
234
235
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

Suraj Patil's avatar
Suraj Patil committed
236
237
238
239
240
241
242
243
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
244
            image_encoder=image_encoder,
Suraj Patil's avatar
Suraj Patil committed
245
        )
Patrick von Platen's avatar
Patrick von Platen committed
246
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
247
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
248
        self.register_to_config(requires_safety_checker=requires_safety_checker)
Suraj Patil's avatar
Suraj Patil committed
249

250
251
    def enable_vae_slicing(self):
        r"""
252
253
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
254
255
256
257
258
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
259
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
260
261
262
263
        computing decoding in one step.
        """
        self.vae.disable_slicing()

264
265
    def enable_vae_tiling(self):
        r"""
266
267
268
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
269
270
271
272
273
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
274
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
275
276
277
278
        computing decoding in one step.
        """
        self.vae.disable_tiling()

279
280
281
282
283
284
285
286
287
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
288
        lora_scale: Optional[float] = None,
289
        **kwargs,
290
291
292
293
294
295
296
297
298
299
300
301
302
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
303
            **kwargs,
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
321
        clip_skip: Optional[int] = None,
322
    ):
323
324
325
326
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
327
            prompt (`str` or `List[str]`, *optional*):
328
329
330
331
332
333
334
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
335
            negative_prompt (`str` or `List[str]`, *optional*):
336
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
337
338
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
339
340
341
342
343
344
345
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
346
            lora_scale (`float`, *optional*):
347
348
349
350
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
351
        """
352
353
354
355
356
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

357
            # dynamically adjust the LoRA scale
358
            if not USE_PEFT_BACKEND:
359
360
361
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)
362

363
364
365
366
367
368
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
369

370
        if prompt_embeds is None:
371
372
373
374
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

375
376
377
378
379
380
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
381
            )
382
383
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
Patrick von Platen's avatar
Patrick von Platen committed
384

385
386
387
388
389
390
391
392
393
394
            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
Patrick von Platen's avatar
Patrick von Platen committed
395

396
397
398
399
            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None
400

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
417

418
419
420
421
422
423
424
425
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
426
427

        bs_embed, seq_len, _ = prompt_embeds.shape
428
        # duplicate text embeddings for each generation per prompt, using mps friendly method
429
430
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
431
432

        # get unconditional embeddings for classifier free guidance
433
        if do_classifier_free_guidance and negative_prompt_embeds is None:
434
435
436
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
437
            elif prompt is not None and type(prompt) is not type(negative_prompt):
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

453
454
455
456
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

457
            max_length = prompt_embeds.shape[1]
458
459
460
461
462
463
464
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )
Patrick von Platen's avatar
Patrick von Platen committed
465
466
467
468
469
470

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

471
            negative_prompt_embeds = self.text_encoder(
Patrick von Platen's avatar
Patrick von Platen committed
472
473
474
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
475
            negative_prompt_embeds = negative_prompt_embeds[0]
476

477
        if do_classifier_free_guidance:
478
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
479
480
            seq_len = negative_prompt_embeds.shape[1]

481
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
482
483
484

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
485

486
        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
487
            # Retrieve the original scale by scaling back the LoRA layers
488
            unscale_lora_layers(self.text_encoder, lora_scale)
489

490
        return prompt_embeds, negative_prompt_embeds
491

492
493
494
495
496
497
498
499
500
501
502
503
504
    def encode_image(self, image, device, num_images_per_prompt):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        image_embeds = self.image_encoder(image).image_embeds
        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)

        uncond_image_embeds = torch.zeros_like(image_embeds)
        return image_embeds, uncond_image_embeds

505
    def run_safety_checker(self, image, device, dtype):
506
507
508
509
510
511
512
513
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
514
515
516
517
518
519
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    def decode_latents(self, latents):
520
521
522
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

523
        latents = 1 / self.vae.config.scaling_factor * latents
524
        image = self.vae.decode(latents, return_dict=False)[0]
525
        image = (image / 2 + 0.5).clamp(0, 1)
526
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

547
548
549
550
551
552
553
554
555
    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
556
        callback_on_step_end_tensor_inputs=None,
557
    ):
558
559
560
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

561
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
562
563
564
565
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
566
567
568
569
570
571
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )
572

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

599
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
Patrick von Platen's avatar
Patrick von Platen committed
600
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
601
602
603
604
605
606
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

607
        if latents is None:
608
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
609
610
611
612
613
614
615
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

Patrick von Platen's avatar
Patrick von Platen committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            timesteps (`torch.Tensor`):
                generate embedding vectors at these timesteps
            embedding_dim (`int`, *optional*, defaults to 512):
                dimension of the embeddings to generate
            dtype:
                data type of the generated embeddings

        Returns:
            `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
Patrick von Platen's avatar
Patrick von Platen committed
688
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
689
690
691
692
693
694
695
696
697

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

Suraj Patil's avatar
Suraj Patil committed
698
    @torch.no_grad()
699
    @replace_example_docstring(EXAMPLE_DOC_STRING)
Suraj Patil's avatar
Suraj Patil committed
700
701
    def __call__(
        self,
702
        prompt: Union[str, List[str]] = None,
703
704
        height: Optional[int] = None,
        width: Optional[int] = None,
705
        num_inference_steps: int = 50,
706
        timesteps: List[int] = None,
707
        guidance_scale: float = 7.5,
708
        negative_prompt: Optional[Union[str, List[str]]] = None,
709
        num_images_per_prompt: Optional[int] = 1,
710
        eta: float = 0.0,
711
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
712
        latents: Optional[torch.FloatTensor] = None,
713
714
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
715
        ip_adapter_image: Optional[PipelineImageInput] = None,
Suraj Patil's avatar
Suraj Patil committed
716
        output_type: Optional[str] = "pil",
717
        return_dict: bool = True,
718
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
719
        guidance_rescale: float = 0.0,
720
        clip_skip: Optional[int] = None,
721
722
723
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
Suraj Patil's avatar
Suraj Patil committed
724
    ):
725
        r"""
726
        The call function to the pipeline for generation.
727
728

        Args:
729
            prompt (`str` or `List[str]`, *optional*):
730
731
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
732
                The height in pixels of the generated image.
733
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
734
735
736
737
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
738
739
740
741
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
742
            guidance_scale (`float`, *optional*, defaults to 7.5):
743
744
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
745
            negative_prompt (`str` or `List[str]`, *optional*):
746
747
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
748
749
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
750
            eta (`float`, *optional*, defaults to 0.0):
751
752
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
753
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
754
755
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
756
            latents (`torch.FloatTensor`, *optional*):
757
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
758
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
759
                tensor is generated by sampling using the supplied random `generator`.
760
            prompt_embeds (`torch.FloatTensor`, *optional*):
761
762
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
763
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
764
765
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
766
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
767
            output_type (`str`, *optional*, defaults to `"pil"`):
768
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
769
770
771
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
772
            cross_attention_kwargs (`dict`, *optional*):
773
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
Patrick von Platen's avatar
Patrick von Platen committed
774
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
775
            guidance_rescale (`float`, *optional*, defaults to 0.0):
776
777
778
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
779
780
781
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
782
783
784
785
786
787
788
789
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
Steven Liu's avatar
Steven Liu committed
790
                `._callback_tensor_inputs` attribute of your pipeline class.
791

792
793
        Examples:

794
        Returns:
795
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
796
797
798
799
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
800
        """
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

818
        # 0. Default height and width to unet
Patrick von Platen's avatar
Patrick von Platen committed
819
820
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
821
        # to deal with lora scaling and other possible forward hooks
Suraj Patil's avatar
Suraj Patil committed
822

823
        # 1. Check inputs. Raise error if not correct
824
        self.check_inputs(
825
826
827
828
829
830
831
832
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
833
        )
834

835
836
837
838
839
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

840
        # 2. Define call parameters
841
842
843
844
845
846
847
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

Anton Lozhkov's avatar
Anton Lozhkov committed
848
        device = self._execution_device
Suraj Patil's avatar
Suraj Patil committed
849

850
        # 3. Encode input prompt
851
852
853
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
854

855
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
856
857
858
            prompt,
            device,
            num_images_per_prompt,
859
            self.do_classifier_free_guidance,
860
861
862
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
863
            lora_scale=lora_scale,
864
            clip_skip=self.clip_skip,
865
        )
866

867
868
869
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
870
        if self.do_classifier_free_guidance:
871
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
872

873
874
875
876
877
        if ip_adapter_image is not None:
            image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
            if self.do_classifier_free_guidance:
                image_embeds = torch.cat([negative_image_embeds, image_embeds])

878
        # 4. Prepare timesteps
879
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
880
881

        # 5. Prepare latent variables
882
        num_channels_latents = self.unet.config.in_channels
883
884
885
886
887
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
888
            prompt_embeds.dtype,
889
890
891
892
            device,
            generator,
            latents,
        )
Suraj Patil's avatar
Suraj Patil committed
893

894
895
        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
hlky's avatar
hlky committed
896

897
898
899
900
        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None

        # 6.2 Optionally get Guidance Scale Embedding
Patrick von Platen's avatar
Patrick von Platen committed
901
902
903
904
905
906
907
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

908
        # 7. Denoising loop
909
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
910
        self._num_timesteps = len(timesteps)
911
912
913
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
914
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
915
916
917
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
918
919
920
921
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
Patrick von Platen's avatar
Patrick von Platen committed
922
                    timestep_cond=timestep_cond,
923
                    cross_attention_kwargs=self.cross_attention_kwargs,
924
                    added_cond_kwargs=added_cond_kwargs,
925
926
                    return_dict=False,
                )[0]
927
928

                # perform guidance
929
                if self.do_classifier_free_guidance:
930
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
931
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
932

933
                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
934
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
935
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
936

937
                # compute the previous noisy sample x_t -> x_t-1
938
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
939

940
941
942
943
944
945
946
947
948
949
                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

950
                # call the callback, if provided
951
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
952
953
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
954
955
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
956

957
        if not output_type == "latent":
Will Berman's avatar
Will Berman committed
958
959
960
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
961
962
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
963
964
            image = latents
            has_nsfw_concept = None
Suraj Patil's avatar
Suraj Patil committed
965

966
967
        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
968
        else:
969
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
970

971
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
Suraj Patil's avatar
Suraj Patil committed
972

973
974
        # Offload all models
        self.maybe_free_model_hooks()
975

976
977
978
979
        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)