pipeline_stable_diffusion.py 21.7 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
import inspect
2
from typing import Callable, List, Optional, Union
Suraj Patil's avatar
Suraj Patil committed
3
4
5

import torch

6
from diffusers.utils import is_accelerate_available
Suraj Patil's avatar
Suraj Patil committed
7
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
Suraj Patil's avatar
Suraj Patil committed
8

9
from ...configuration_utils import FrozenDict
Suraj Patil's avatar
Suraj Patil committed
10
11
from ...models import AutoencoderKL, UNet2DConditionModel
from ...pipeline_utils import DiffusionPipeline
hlky's avatar
hlky committed
12
13
14
15
16
17
18
from ...schedulers import (
    DDIMScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
19
from ...utils import deprecate, logging
20
from . import StableDiffusionPipelineOutput
Suraj Patil's avatar
Suraj Patil committed
21
from .safety_checker import StableDiffusionSafetyChecker
Suraj Patil's avatar
Suraj Patil committed
22
23


24
25
26
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


Suraj Patil's avatar
Suraj Patil committed
27
class StableDiffusionPipeline(DiffusionPipeline):
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    r"""
    Pipeline for text-to-image generation using Stable Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
49
            Classification module that estimates whether generated images could be considered offensive or harmful.
apolinario's avatar
apolinario committed
50
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
51
52
53
54
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """

Suraj Patil's avatar
Suraj Patil committed
55
56
57
58
59
60
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
hlky's avatar
hlky committed
61
62
63
        scheduler: Union[
            DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler
        ],
Suraj Patil's avatar
Suraj Patil committed
64
65
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
Suraj Patil's avatar
Suraj Patil committed
66
67
    ):
        super().__init__()
68
69

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
70
            deprecation_message = (
71
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
Yuta Hayashibe's avatar
Yuta Hayashibe committed
72
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
73
74
75
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
76
                " file"
77
            )
78
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
79
80
81
82
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

83
84
85
86
87
88
89
90
91
92
93
94
95
        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

96
97
        if safety_checker is None:
            logger.warn(
98
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
99
100
101
102
103
104
105
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

Suraj Patil's avatar
Suraj Patil committed
106
107
108
109
110
111
112
113
114
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
Suraj Patil's avatar
Suraj Patil committed
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    def enable_xformers_memory_efficient_attention(self):
        r"""
        Enable memory efficient attention as implemented in xformers.

        When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
        time. Speed up at training time is not guaranteed.

        Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
        is used.
        """
        self.unet.set_use_memory_efficient_attention_xformers(True)

    def disable_xformers_memory_efficient_attention(self):
        r"""
        Disable memory efficient attention as implemented in xformers.
        """
        self.unet.set_use_memory_efficient_attention_xformers(False)

134
    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
135
136
137
        r"""
        Enable sliced attention computation.

Pedro Cuenca's avatar
Pedro Cuenca committed
138
139
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
140
141
142

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
Pedro Cuenca's avatar
Pedro Cuenca committed
143
144
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
145
146
                `attention_head_dim` must be a multiple of `slice_size`.
        """
147
148
149
150
151
152
153
        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = self.unet.config.attention_head_dim // 2
        self.unet.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
154
155
156
157
        r"""
        Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
        back to computing attention in one step.
        """
Patrick von Platen's avatar
Patrick von Platen committed
158
159
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)
160

161
    def enable_sequential_cpu_offload(self):
162
163
164
165
166
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        """
167
168
169
170
171
172
173
174
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device("cuda")

        for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
175
176
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)
177

Suraj Patil's avatar
Suraj Patil committed
178
179
180
181
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
182
183
184
185
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
186
        negative_prompt: Optional[Union[str, List[str]]] = None,
187
        num_images_per_prompt: Optional[int] = 1,
188
        eta: float = 0.0,
Suraj Patil's avatar
Suraj Patil committed
189
        generator: Optional[torch.Generator] = None,
190
        latents: Optional[torch.FloatTensor] = None,
Suraj Patil's avatar
Suraj Patil committed
191
        output_type: Optional[str] = "pil",
192
        return_dict: bool = True,
193
194
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
Pedro Cuenca's avatar
Pedro Cuenca committed
195
        **kwargs,
Suraj Patil's avatar
Suraj Patil committed
196
    ):
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
216
217
218
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
219
220
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
221
222
223
224
225
226
227
228
229
230
231
232
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (畏) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
233
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
234
235
236
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
237
238
239
240
241
242
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
243
244

        Returns:
245
246
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
247
248
249
250
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
Suraj Patil's avatar
Suraj Patil committed
251
252
253
254
255
256
257
        if isinstance(prompt, str):
            batch_size = 1
        elif isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

258
259
260
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

261
262
263
264
265
266
267
268
        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

Suraj Patil's avatar
Suraj Patil committed
269
        # get prompt text embeddings
270
        text_inputs = self.tokenizer(
271
272
273
274
275
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        )
276
277
278
279
280
281
282
283
284
285
        text_input_ids = text_inputs.input_ids

        if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
            removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )
            text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
        text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
Suraj Patil's avatar
Suraj Patil committed
286

287
288
289
290
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        bs_embed, seq_len, _ = text_embeddings.shape
        text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
        text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
291

Suraj Patil's avatar
Suraj Patil committed
292
293
294
295
296
297
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0
        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
298
299
            uncond_tokens: List[str]
            if negative_prompt is None:
Pedro Cuenca's avatar
Pedro Cuenca committed
300
                uncond_tokens = [""] * batch_size
301
302
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
303
304
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
305
306
                )
            elif isinstance(negative_prompt, str):
307
                uncond_tokens = [negative_prompt]
308
309
310
311
312
313
314
315
316
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

317
            max_length = text_input_ids.shape[-1]
Suraj Patil's avatar
Suraj Patil committed
318
            uncond_input = self.tokenizer(
319
320
321
322
323
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
Suraj Patil's avatar
Suraj Patil committed
324
            )
Pedro Cuenca's avatar
Pedro Cuenca committed
325
            uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
Suraj Patil's avatar
Suraj Patil committed
326

327
328
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_embeddings.shape[1]
Pedro Cuenca's avatar
Pedro Cuenca committed
329
            uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
330
            uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
331

Suraj Patil's avatar
Suraj Patil committed
332
333
334
335
336
            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

337
        # get the initial random noise unless the user supplied it
338
339
340
341

        # Unlike in other pipelines, latents need to be generated in the target device
        # for 1-to-1 results reproducibility with the CompVis implementation.
        # However this currently doesn't work in `mps`.
342
        latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
343
        latents_dtype = text_embeddings.dtype
344
        if latents is None:
345
            if self.device.type == "mps":
346
                # randn does not work reproducibly on mps
347
348
349
350
351
                latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
                    self.device
                )
            else:
                latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
352
353
354
        else:
            if latents.shape != latents_shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
355
            latents = latents.to(self.device)
356
357

        # set timesteps
358
        self.scheduler.set_timesteps(num_inference_steps)
Suraj Patil's avatar
Suraj Patil committed
359

360
        # Some schedulers like PNDM have timesteps as arrays
361
362
        # It's more optimized to move all timesteps to correct device beforehand
        timesteps_tensor = self.scheduler.timesteps.to(self.device)
363

364
365
        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
366

Suraj Patil's avatar
Suraj Patil committed
367
368
369
370
371
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (畏) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to 畏 in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
372
        extra_step_kwargs = {}
Suraj Patil's avatar
Suraj Patil committed
373
        if accepts_eta:
374
            extra_step_kwargs["eta"] = eta
Suraj Patil's avatar
Suraj Patil committed
375

hlky's avatar
hlky committed
376
377
378
379
380
        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator

381
        for i, t in enumerate(self.progress_bar(timesteps_tensor)):
Suraj Patil's avatar
Suraj Patil committed
382
383
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
384
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
Suraj Patil's avatar
Suraj Patil committed
385
386

            # predict the noise residual
387
            noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
Suraj Patil's avatar
Suraj Patil committed
388
389
390
391
392
393
394

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
395
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
Suraj Patil's avatar
Suraj Patil committed
396

397
398
399
400
            # call the callback, if provided
            if callback is not None and i % callback_steps == 0:
                callback(i, t, latents)

Suraj Patil's avatar
Suraj Patil committed
401
        latents = 1 / 0.18215 * latents
402
        image = self.vae.decode(latents).sample
Suraj Patil's avatar
Suraj Patil committed
403
404

        image = (image / 2 + 0.5).clamp(0, 1)
405
406
407

        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
Suraj Patil's avatar
Suraj Patil committed
408

409
410
411
412
413
414
415
416
417
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
                self.device
            )
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
            )
        else:
            has_nsfw_concept = None
Suraj Patil's avatar
Suraj Patil committed
418

Suraj Patil's avatar
Suraj Patil committed
419
420
421
        if output_type == "pil":
            image = self.numpy_to_pil(image)

422
423
424
425
        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)