README.md 8.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
<p align="center">
  <img src="https://photo-maker.github.io/assets/logo.png" height=100>

</p>

<!-- ## <div align="center"><b>PhotoMaker</b></div> -->
<div align="center">
  
## PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding
[[Paper](https://huggingface.co/papers/2312.04461)] &emsp; [[Project Page](https://photo-maker.github.io)] &emsp; [[Model Card](https://huggingface.co/TencentARC/PhotoMaker)] <br>

Zhen Li's avatar
Zhen Li committed
12
[[🤗 Demo (Realistic)](https://huggingface.co/spaces/TencentARC/PhotoMaker)] &emsp; [[🤗 Demo (Stylization)](https://huggingface.co/spaces/TencentARC/PhotoMaker-Style)] <be>
13

Zhen Li's avatar
Zhen Li committed
14
If the ID fidelity is not enough for you, please try our [stylization application](https://huggingface.co/spaces/TencentARC/PhotoMaker-Style), you may be pleasantly surprised.
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
</div>


---

Official implementation of **[PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding](https://huggingface.co/papers/2312.04461)**.

### 🌠  **Key Features:**

1. Rapid customization **within seconds**, with no additional LoRA training.
2. Ensures impressive ID fidelity, offering diversity, promising text controllability, and high-quality generation.
3. Can serve as an **Adapter** to collaborate with other Base Models alongside LoRA modules in community.

---

Zhen Li's avatar
Zhen Li committed
30
31
❗❗ Note: If there are any PhotoMaker based resources and applications, please stay in the [discussion](https://github.com/TencentARC/PhotoMaker/discussions/36) and we will list them in the README.

Paper99's avatar
Paper99 committed
32
<div align="center">
Paper99's avatar
Paper99 committed
33

Paper99's avatar
Paper99 committed
34
35
![photomaker_demo_fast](https://github.com/TencentARC/PhotoMaker/assets/21050959/e72cbf4d-938f-417d-b308-55e76a4bc5c8)
</div>
Paper99's avatar
Paper99 committed
36
37


38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
## 🚩 **New Features/Updates**
- ✅ Jan. 15, 2024. We release PhotoMaker.

---

## 🔥 **Examples**


### Realistic generation 

- [![Huggingface PhotoMaker](https://img.shields.io/static/v1?label=Demo&message=Huggingface%20Gradio&color=orange)](https://huggingface.co/spaces/TencentARC/PhotoMaker)
- [**PhotoMaker notebook demo**](photomaker_demo.ipynb)

<p align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6285a9133ab6642179158944/BYBZNyfmN4jBKBxxt4uxz.jpeg" height=450>
</p>

<p align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6285a9133ab6642179158944/9KYqoDxfbNVLzVKZzSzwo.jpeg" height=450>
</p>

### Stylization generation 

Note: only change the base model and add the LoRA modules for better stylization

- [![Huggingface PhotoMaker-Style](https://img.shields.io/static/v1?label=Demo&message=Huggingface%20Gradio&color=orange)](https://huggingface.co/spaces/TencentARC/PhotoMaker-Style)
- [**PhotoMaker-Style notebook demo**](photomaker_style_demo.ipynb) 

<p align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6285a9133ab6642179158944/du884lcjpqqjnJIxpATM2.jpeg" height=450>
</p>
  
<p align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6285a9133ab6642179158944/-AC7Hr5YL4yW1zXGe_Izl.jpeg" height=450>
</p>

# 🔧 Dependencies and Installation

- Python >= 3.8 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html))
- [PyTorch >= 2.0.0](https://pytorch.org/)
```bash
79
conda create --name photomaker python=3.10
Zhen Li's avatar
Zhen Li committed
80
conda activate photomaker
81
82
83
pip install -U pip

# Install requirements
84
pip install -r requirements.txt
85
86
87
88
89
90
91
92

# Install photomaker
pip install git+https://github.com/TencentARC/PhotoMaker.git
```

Then you can run the following command to use it
```python
from photomaker import PhotoMakerStableDiffusionXLPipeline
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
```

# ⏬ Download Models 
The model will be automatically downloaded through following two lines:

```python
from huggingface_hub import hf_hub_download
photomaker_path = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
```

You can also choose to download manually from this [url](https://huggingface.co/TencentARC/PhotoMaker).

# 💻 How to Test

## Use like [diffusers](https://github.com/huggingface/diffusers)

- Dependency
```py
import torch
import os
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler
115
from photomaker import PhotoMakerStableDiffusionXLPipeline
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

### Load base model
pipe = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
    base_model_path,  # can change to any base model based on SDXL
    torch_dtype=torch.bfloat16, 
    use_safetensors=True, 
    variant="fp16"
).to(device)

### Load PhotoMaker checkpoint
pipe.load_photomaker_adapter(
    os.path.dirname(photomaker_path),
    subfolder="",
    weight_name=os.path.basename(photomaker_path),
    trigger_word="img"  # define the trigger word
)     

pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)

### Also can cooperate with other LoRA modules
# pipe.load_lora_weights(os.path.dirname(lora_path), weight_name=lora_model_name, adapter_name="xl_more_art-full")
# pipe.set_adapters(["photomaker", "xl_more_art-full"], adapter_weights=[1.0, 0.5])

pipe.fuse_lora()
```

- Input ID Images
```py
### define the input ID images
input_folder_name = './examples/newton_man'
image_basename_list = os.listdir(input_folder_name)
image_path_list = sorted([os.path.join(input_folder_name, basename) for basename in image_basename_list])

input_id_images = []
for image_path in image_path_list:
    input_id_images.append(load_image(image_path))
```

<div align="center">

<a href="https://github.com/TencentARC/PhotoMaker/assets/21050959/01d53dfa-7528-4f09-a1a5-96b349ae7800" align="center"><img style="margin:0;padding:0;" src="https://github.com/TencentARC/PhotoMaker/assets/21050959/01d53dfa-7528-4f09-a1a5-96b349ae7800"/></a>
</div>

- Generation
```py
# Note that the trigger word `img` must follow the class word for personalization
prompt = "a half-body portrait of a man img wearing the sunglasses in Iron man suit, best quality"
negative_prompt = "(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth, grayscale"
generator = torch.Generator(device=device).manual_seed(42)
images = pipe(
    prompt=prompt,
    input_id_images=input_id_images,
    negative_prompt=negative_prompt,
    num_images_per_prompt=1,
    num_inference_steps=num_steps,
    start_merge_step=10,
    generator=generator,
).images[0]
gen_images.save('out_photomaker.png')
```

<div align="center">

<a href="https://github.com/TencentARC/PhotoMaker/assets/21050959/703c00e1-5e50-4c19-899e-25ee682d2c06" align="center"><img width=400 style="margin:0;padding:0;" src="https://github.com/TencentARC/PhotoMaker/assets/21050959/703c00e1-5e50-4c19-899e-25ee682d2c06"/></a>

</div>

## Start a local gradio demo
Run the following command:

```python
python gradio_demo/app.py
```

You could customize this script in [this file](gradio_demo/app.py).

## Usage Tips:
- Upload more photos of the person to be customized to improve ID fidelty. If the input is Asian face(s), maybe consider adding 'asian' before the class word, e.g., `asian woman img`
- When stylizing, does the generated face look too realistic? Adjust the Style strength to 30-50, the larger the number, the less ID fidelty, but the stylization ability will be better. You could also try out other base models or LoRAs with good stylization effects.
- For faster speed, reduce the number of generated images and sampling steps. However, please note that reducing the sampling steps may compromise the ID fidelity.

# 🤗 Acknowledgements
198
- PhotoMaker is co-hosted by Tencent ARC Lab and Nankai University [MCG-NKU](https://mmcheng.net/cmm/).
199
- Inspired from many excellent demos and repos, including [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter), [multimodalart/Ip-Adapter-FaceID](https://huggingface.co/spaces/multimodalart/Ip-Adapter-FaceID), [FastComposer](https://github.com/mit-han-lab/fastcomposer), and [T2I-Adapter](https://github.com/TencentARC/T2I-Adapter). Thanks for their great works!
Zhen Li's avatar
Zhen Li committed
200
- Thanks for Venus team in Tencent PCG for their feedback and suggestions.
Zhen Li's avatar
Zhen Li committed
201
- Thanks for HuggingFace team for their generous support! 
202
203
204
205
206
207
208
209
210
211
212
213
214

# Disclaimer
This project strives to positively impact the domain of AI-driven image generation. Users are granted the freedom to create images using this tool, but they are expected to comply with local laws and utilize it in a responsible manner. The developers do not assume any responsibility for potential misuse by users.

# BibTeX
If you find PhotoMaker useful for your research and applications, please cite using this BibTeX:

```bibtex
@article{li2023photomaker,
  title={PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding},
  author={Li, Zhen and Cao, Mingdeng and Wang, Xintao and Qi, Zhongang and Cheng, Ming-Ming and Shan, Ying},
  booktitle={arXiv preprint arxiv:2312.04461},
  year={2023}
Zhen Li's avatar
Zhen Li committed
215
}