Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
ComfyUI
Commits
bae4fb4a
"...composable_kernel_onnx.git" did not exist on "38470e0497d1f6da335751776fe643ea0e02a841"
Commit
bae4fb4a
authored
May 04, 2023
by
comfyanonymous
Browse files
Fix imports.
parent
7e51bbd0
Changes
13
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
42 additions
and
42 deletions
+42
-42
comfy/cldm/cldm.py
comfy/cldm/cldm.py
+5
-5
comfy/gligen.py
comfy/gligen.py
+1
-1
comfy/ldm/models/autoencoder.py
comfy/ldm/models/autoencoder.py
+4
-4
comfy/ldm/models/diffusion/ddim.py
comfy/ldm/models/diffusion/ddim.py
+1
-1
comfy/ldm/models/diffusion/ddpm.py
comfy/ldm/models/diffusion/ddpm.py
+6
-6
comfy/ldm/modules/attention.py
comfy/ldm/modules/attention.py
+2
-2
comfy/ldm/modules/diffusionmodules/model.py
comfy/ldm/modules/diffusionmodules/model.py
+1
-1
comfy/ldm/modules/diffusionmodules/openaimodel.py
comfy/ldm/modules/diffusionmodules/openaimodel.py
+3
-3
comfy/ldm/modules/diffusionmodules/upscaling.py
comfy/ldm/modules/diffusionmodules/upscaling.py
+2
-2
comfy/ldm/modules/diffusionmodules/util.py
comfy/ldm/modules/diffusionmodules/util.py
+1
-1
comfy/ldm/modules/encoders/noise_aug_modules.py
comfy/ldm/modules/encoders/noise_aug_modules.py
+2
-2
comfy/model_management.py
comfy/model_management.py
+1
-1
comfy/sd.py
comfy/sd.py
+13
-13
No files found.
comfy/cldm/cldm.py
View file @
bae4fb4a
...
@@ -5,17 +5,17 @@ import torch
...
@@ -5,17 +5,17 @@ import torch
import
torch
as
th
import
torch
as
th
import
torch.nn
as
nn
import
torch.nn
as
nn
from
ldm.modules.diffusionmodules.util
import
(
from
..
ldm.modules.diffusionmodules.util
import
(
conv_nd
,
conv_nd
,
linear
,
linear
,
zero_module
,
zero_module
,
timestep_embedding
,
timestep_embedding
,
)
)
from
ldm.modules.attention
import
SpatialTransformer
from
..
ldm.modules.attention
import
SpatialTransformer
from
ldm.modules.diffusionmodules.openaimodel
import
UNetModel
,
TimestepEmbedSequential
,
ResBlock
,
Downsample
,
AttentionBlock
from
..
ldm.modules.diffusionmodules.openaimodel
import
UNetModel
,
TimestepEmbedSequential
,
ResBlock
,
Downsample
,
AttentionBlock
from
ldm.models.diffusion.ddpm
import
LatentDiffusion
from
..
ldm.models.diffusion.ddpm
import
LatentDiffusion
from
ldm.util
import
log_txt_as_img
,
exists
,
instantiate_from_config
from
..
ldm.util
import
log_txt_as_img
,
exists
,
instantiate_from_config
class
ControlledUnetModel
(
UNetModel
):
class
ControlledUnetModel
(
UNetModel
):
...
...
comfy/gligen.py
View file @
bae4fb4a
import
torch
import
torch
from
torch
import
nn
,
einsum
from
torch
import
nn
,
einsum
from
ldm.modules.attention
import
CrossAttention
from
.
ldm.modules.attention
import
CrossAttention
from
inspect
import
isfunction
from
inspect
import
isfunction
...
...
comfy/ldm/models/autoencoder.py
View file @
bae4fb4a
...
@@ -3,11 +3,11 @@ import torch
...
@@ -3,11 +3,11 @@ import torch
import
torch.nn.functional
as
F
import
torch.nn.functional
as
F
from
contextlib
import
contextmanager
from
contextlib
import
contextmanager
from
ldm.modules.diffusionmodules.model
import
Encoder
,
Decoder
from
comfy.
ldm.modules.diffusionmodules.model
import
Encoder
,
Decoder
from
ldm.modules.distributions.distributions
import
DiagonalGaussianDistribution
from
comfy.
ldm.modules.distributions.distributions
import
DiagonalGaussianDistribution
from
ldm.util
import
instantiate_from_config
from
comfy.
ldm.util
import
instantiate_from_config
from
ldm.modules.ema
import
LitEma
from
comfy.
ldm.modules.ema
import
LitEma
# class AutoencoderKL(pl.LightningModule):
# class AutoencoderKL(pl.LightningModule):
class
AutoencoderKL
(
torch
.
nn
.
Module
):
class
AutoencoderKL
(
torch
.
nn
.
Module
):
...
...
comfy/ldm/models/diffusion/ddim.py
View file @
bae4fb4a
...
@@ -4,7 +4,7 @@ import torch
...
@@ -4,7 +4,7 @@ import torch
import
numpy
as
np
import
numpy
as
np
from
tqdm
import
tqdm
from
tqdm
import
tqdm
from
ldm.modules.diffusionmodules.util
import
make_ddim_sampling_parameters
,
make_ddim_timesteps
,
noise_like
,
extract_into_tensor
from
comfy.
ldm.modules.diffusionmodules.util
import
make_ddim_sampling_parameters
,
make_ddim_timesteps
,
noise_like
,
extract_into_tensor
class
DDIMSampler
(
object
):
class
DDIMSampler
(
object
):
...
...
comfy/ldm/models/diffusion/ddpm.py
View file @
bae4fb4a
...
@@ -19,12 +19,12 @@ from tqdm import tqdm
...
@@ -19,12 +19,12 @@ from tqdm import tqdm
from
torchvision.utils
import
make_grid
from
torchvision.utils
import
make_grid
# from pytorch_lightning.utilities.distributed import rank_zero_only
# from pytorch_lightning.utilities.distributed import rank_zero_only
from
ldm.util
import
log_txt_as_img
,
exists
,
default
,
ismap
,
isimage
,
mean_flat
,
count_params
,
instantiate_from_config
from
comfy.
ldm.util
import
log_txt_as_img
,
exists
,
default
,
ismap
,
isimage
,
mean_flat
,
count_params
,
instantiate_from_config
from
ldm.modules.ema
import
LitEma
from
comfy.
ldm.modules.ema
import
LitEma
from
ldm.modules.distributions.distributions
import
normal_kl
,
DiagonalGaussianDistribution
from
comfy.
ldm.modules.distributions.distributions
import
normal_kl
,
DiagonalGaussianDistribution
from
ldm.models
.autoencoder
import
IdentityFirstStage
,
AutoencoderKL
from
.
.autoencoder
import
IdentityFirstStage
,
AutoencoderKL
from
ldm.modules.diffusionmodules.util
import
make_beta_schedule
,
extract_into_tensor
,
noise_like
from
comfy.
ldm.modules.diffusionmodules.util
import
make_beta_schedule
,
extract_into_tensor
,
noise_like
from
ldm.models.diffusion
.ddim
import
DDIMSampler
from
.ddim
import
DDIMSampler
__conditioning_keys__
=
{
'concat'
:
'c_concat'
,
__conditioning_keys__
=
{
'concat'
:
'c_concat'
,
...
...
comfy/ldm/modules/attention.py
View file @
bae4fb4a
...
@@ -6,7 +6,7 @@ from torch import nn, einsum
...
@@ -6,7 +6,7 @@ from torch import nn, einsum
from
einops
import
rearrange
,
repeat
from
einops
import
rearrange
,
repeat
from
typing
import
Optional
,
Any
from
typing
import
Optional
,
Any
from
ldm.modules
.diffusionmodules.util
import
checkpoint
from
.diffusionmodules.util
import
checkpoint
from
.sub_quadratic_attention
import
efficient_dot_product_attention
from
.sub_quadratic_attention
import
efficient_dot_product_attention
from
comfy
import
model_management
from
comfy
import
model_management
...
@@ -21,7 +21,7 @@ if model_management.xformers_enabled():
...
@@ -21,7 +21,7 @@ if model_management.xformers_enabled():
import
os
import
os
_ATTN_PRECISION
=
os
.
environ
.
get
(
"ATTN_PRECISION"
,
"fp32"
)
_ATTN_PRECISION
=
os
.
environ
.
get
(
"ATTN_PRECISION"
,
"fp32"
)
from
cli_args
import
args
from
comfy.
cli_args
import
args
def
exists
(
val
):
def
exists
(
val
):
return
val
is
not
None
return
val
is
not
None
...
...
comfy/ldm/modules/diffusionmodules/model.py
View file @
bae4fb4a
...
@@ -6,7 +6,7 @@ import numpy as np
...
@@ -6,7 +6,7 @@ import numpy as np
from
einops
import
rearrange
from
einops
import
rearrange
from
typing
import
Optional
,
Any
from
typing
import
Optional
,
Any
from
ldm.modules
.attention
import
MemoryEfficientCrossAttention
from
.
.attention
import
MemoryEfficientCrossAttention
from
comfy
import
model_management
from
comfy
import
model_management
if
model_management
.
xformers_enabled_vae
():
if
model_management
.
xformers_enabled_vae
():
...
...
comfy/ldm/modules/diffusionmodules/openaimodel.py
View file @
bae4fb4a
...
@@ -6,7 +6,7 @@ import torch as th
...
@@ -6,7 +6,7 @@ import torch as th
import
torch.nn
as
nn
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
torch.nn.functional
as
F
from
ldm.modules.diffusionmodules
.util
import
(
from
.util
import
(
checkpoint
,
checkpoint
,
conv_nd
,
conv_nd
,
linear
,
linear
,
...
@@ -15,8 +15,8 @@ from ldm.modules.diffusionmodules.util import (
...
@@ -15,8 +15,8 @@ from ldm.modules.diffusionmodules.util import (
normalization
,
normalization
,
timestep_embedding
,
timestep_embedding
,
)
)
from
ldm.modules
.attention
import
SpatialTransformer
from
.
.attention
import
SpatialTransformer
from
ldm.util
import
exists
from
comfy.
ldm.util
import
exists
# dummy replace
# dummy replace
...
...
comfy/ldm/modules/diffusionmodules/upscaling.py
View file @
bae4fb4a
...
@@ -3,8 +3,8 @@ import torch.nn as nn
...
@@ -3,8 +3,8 @@ import torch.nn as nn
import
numpy
as
np
import
numpy
as
np
from
functools
import
partial
from
functools
import
partial
from
ldm.modules.diffusionmodules
.util
import
extract_into_tensor
,
make_beta_schedule
from
.util
import
extract_into_tensor
,
make_beta_schedule
from
ldm.util
import
default
from
comfy.
ldm.util
import
default
class
AbstractLowScaleModel
(
nn
.
Module
):
class
AbstractLowScaleModel
(
nn
.
Module
):
...
...
comfy/ldm/modules/diffusionmodules/util.py
View file @
bae4fb4a
...
@@ -15,7 +15,7 @@ import torch.nn as nn
...
@@ -15,7 +15,7 @@ import torch.nn as nn
import
numpy
as
np
import
numpy
as
np
from
einops
import
repeat
from
einops
import
repeat
from
ldm.util
import
instantiate_from_config
from
comfy.
ldm.util
import
instantiate_from_config
def
make_beta_schedule
(
schedule
,
n_timestep
,
linear_start
=
1e-4
,
linear_end
=
2e-2
,
cosine_s
=
8e-3
):
def
make_beta_schedule
(
schedule
,
n_timestep
,
linear_start
=
1e-4
,
linear_end
=
2e-2
,
cosine_s
=
8e-3
):
...
...
comfy/ldm/modules/encoders/noise_aug_modules.py
View file @
bae4fb4a
from
ldm.modules
.diffusionmodules.upscaling
import
ImageConcatWithNoiseAugmentation
from
.
.diffusionmodules.upscaling
import
ImageConcatWithNoiseAugmentation
from
ldm.modules
.diffusionmodules.openaimodel
import
Timestep
from
.
.diffusionmodules.openaimodel
import
Timestep
import
torch
import
torch
class
CLIPEmbeddingNoiseAugmentation
(
ImageConcatWithNoiseAugmentation
):
class
CLIPEmbeddingNoiseAugmentation
(
ImageConcatWithNoiseAugmentation
):
...
...
comfy/model_management.py
View file @
bae4fb4a
import
psutil
import
psutil
from
enum
import
Enum
from
enum
import
Enum
from
cli_args
import
args
from
.
cli_args
import
args
class
VRAMState
(
Enum
):
class
VRAMState
(
Enum
):
CPU
=
0
CPU
=
0
...
...
comfy/sd.py
View file @
bae4fb4a
...
@@ -2,8 +2,8 @@ import torch
...
@@ -2,8 +2,8 @@ import torch
import
contextlib
import
contextlib
import
copy
import
copy
import
sd1_clip
from
.
import
sd1_clip
import
sd2_clip
from
.
import
sd2_clip
from
comfy
import
model_management
from
comfy
import
model_management
from
.ldm.util
import
instantiate_from_config
from
.ldm.util
import
instantiate_from_config
from
.ldm.models.autoencoder
import
AutoencoderKL
from
.ldm.models.autoencoder
import
AutoencoderKL
...
@@ -446,10 +446,10 @@ class CLIP:
...
@@ -446,10 +446,10 @@ class CLIP:
else
:
else
:
params
=
{}
params
=
{}
if
self
.
target_clip
==
"ldm.modules.encoders.modules.
FrozenOpenCLIPEmbedder"
:
if
self
.
target_clip
.
endswith
(
"
FrozenOpenCLIPEmbedder"
)
:
clip
=
sd2_clip
.
SD2ClipModel
clip
=
sd2_clip
.
SD2ClipModel
tokenizer
=
sd2_clip
.
SD2Tokenizer
tokenizer
=
sd2_clip
.
SD2Tokenizer
elif
self
.
target_clip
==
"ldm.modules.encoders.modules.
FrozenCLIPEmbedder"
:
elif
self
.
target_clip
.
endswith
(
"
FrozenCLIPEmbedder"
)
:
clip
=
sd1_clip
.
SD1ClipModel
clip
=
sd1_clip
.
SD1ClipModel
tokenizer
=
sd1_clip
.
SD1Tokenizer
tokenizer
=
sd1_clip
.
SD1Tokenizer
...
@@ -896,9 +896,9 @@ def load_clip(ckpt_path, embedding_directory=None):
...
@@ -896,9 +896,9 @@ def load_clip(ckpt_path, embedding_directory=None):
clip_data
=
utils
.
load_torch_file
(
ckpt_path
)
clip_data
=
utils
.
load_torch_file
(
ckpt_path
)
config
=
{}
config
=
{}
if
"text_model.encoder.layers.22.mlp.fc1.weight"
in
clip_data
:
if
"text_model.encoder.layers.22.mlp.fc1.weight"
in
clip_data
:
config
[
'target'
]
=
'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
config
[
'target'
]
=
'
comfy.
ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
else
:
else
:
config
[
'target'
]
=
'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
config
[
'target'
]
=
'
comfy.
ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip
=
CLIP
(
config
=
config
,
embedding_directory
=
embedding_directory
)
clip
=
CLIP
(
config
=
config
,
embedding_directory
=
embedding_directory
)
clip
.
load_from_state_dict
(
clip_data
)
clip
.
load_from_state_dict
(
clip_data
)
return
clip
return
clip
...
@@ -974,9 +974,9 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
...
@@ -974,9 +974,9 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if
output_clip
:
if
output_clip
:
clip_config
=
{}
clip_config
=
{}
if
"cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight"
in
sd_keys
:
if
"cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight"
in
sd_keys
:
clip_config
[
'target'
]
=
'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
clip_config
[
'target'
]
=
'
comfy.
ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
else
:
else
:
clip_config
[
'target'
]
=
'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip_config
[
'target'
]
=
'
comfy.
ldm.modules.encoders.modules.FrozenCLIPEmbedder'
clip
=
CLIP
(
config
=
clip_config
,
embedding_directory
=
embedding_directory
)
clip
=
CLIP
(
config
=
clip_config
,
embedding_directory
=
embedding_directory
)
w
.
cond_stage_model
=
clip
.
cond_stage_model
w
.
cond_stage_model
=
clip
.
cond_stage_model
load_state_dict_to
=
[
w
]
load_state_dict_to
=
[
w
]
...
@@ -997,7 +997,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
...
@@ -997,7 +997,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
noise_schedule_config
[
"timesteps"
]
=
sd
[
noise_aug_key
].
shape
[
0
]
noise_schedule_config
[
"timesteps"
]
=
sd
[
noise_aug_key
].
shape
[
0
]
noise_schedule_config
[
"beta_schedule"
]
=
"squaredcos_cap_v2"
noise_schedule_config
[
"beta_schedule"
]
=
"squaredcos_cap_v2"
params
[
"noise_schedule_config"
]
=
noise_schedule_config
params
[
"noise_schedule_config"
]
=
noise_schedule_config
noise_aug_config
[
'target'
]
=
"ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
noise_aug_config
[
'target'
]
=
"
comfy.
ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
if
size
==
1280
:
#h
if
size
==
1280
:
#h
params
[
"timestep_dim"
]
=
1024
params
[
"timestep_dim"
]
=
1024
elif
size
==
1024
:
#l
elif
size
==
1024
:
#l
...
@@ -1049,19 +1049,19 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
...
@@ -1049,19 +1049,19 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
unet_config
[
"in_channels"
]
=
sd
[
'model.diffusion_model.input_blocks.0.0.weight'
].
shape
[
1
]
unet_config
[
"in_channels"
]
=
sd
[
'model.diffusion_model.input_blocks.0.0.weight'
].
shape
[
1
]
unet_config
[
"context_dim"
]
=
sd
[
'model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
].
shape
[
1
]
unet_config
[
"context_dim"
]
=
sd
[
'model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
].
shape
[
1
]
sd_config
[
"unet_config"
]
=
{
"target"
:
"ldm.modules.diffusionmodules.openaimodel.UNetModel"
,
"params"
:
unet_config
}
sd_config
[
"unet_config"
]
=
{
"target"
:
"
comfy.
ldm.modules.diffusionmodules.openaimodel.UNetModel"
,
"params"
:
unet_config
}
model_config
=
{
"target"
:
"ldm.models.diffusion.ddpm.LatentDiffusion"
,
"params"
:
sd_config
}
model_config
=
{
"target"
:
"
comfy.
ldm.models.diffusion.ddpm.LatentDiffusion"
,
"params"
:
sd_config
}
if
noise_aug_config
is
not
None
:
#SD2.x unclip model
if
noise_aug_config
is
not
None
:
#SD2.x unclip model
sd_config
[
"noise_aug_config"
]
=
noise_aug_config
sd_config
[
"noise_aug_config"
]
=
noise_aug_config
sd_config
[
"image_size"
]
=
96
sd_config
[
"image_size"
]
=
96
sd_config
[
"embedding_dropout"
]
=
0.25
sd_config
[
"embedding_dropout"
]
=
0.25
sd_config
[
"conditioning_key"
]
=
'crossattn-adm'
sd_config
[
"conditioning_key"
]
=
'crossattn-adm'
model_config
[
"target"
]
=
"ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
model_config
[
"target"
]
=
"
comfy.
ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
elif
unet_config
[
"in_channels"
]
>
4
:
#inpainting model
elif
unet_config
[
"in_channels"
]
>
4
:
#inpainting model
sd_config
[
"conditioning_key"
]
=
"hybrid"
sd_config
[
"conditioning_key"
]
=
"hybrid"
sd_config
[
"finetune_keys"
]
=
None
sd_config
[
"finetune_keys"
]
=
None
model_config
[
"target"
]
=
"ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
model_config
[
"target"
]
=
"
comfy.
ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
else
:
else
:
sd_config
[
"conditioning_key"
]
=
"crossattn"
sd_config
[
"conditioning_key"
]
=
"crossattn"
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment