Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
ComfyUI
Commits
af365e4d
Commit
af365e4d
authored
Dec 04, 2023
by
comfyanonymous
Browse files
All the unet ops with weights are now handled by comfy.ops
parent
6efe561c
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
28 additions
and
21 deletions
+28
-21
comfy/controlnet.py
comfy/controlnet.py
+10
-0
comfy/ldm/modules/attention.py
comfy/ldm/modules/attention.py
+4
-14
comfy/ldm/modules/diffusionmodules/openaimodel.py
comfy/ldm/modules/diffusionmodules/openaimodel.py
+6
-7
comfy/ops.py
comfy/ops.py
+8
-0
No files found.
comfy/controlnet.py
View file @
af365e4d
...
...
@@ -5,6 +5,7 @@ import comfy.utils
import
comfy.model_management
import
comfy.model_detection
import
comfy.model_patcher
import
comfy.ops
import
comfy.cldm.cldm
import
comfy.t2i_adapter.adapter
...
...
@@ -248,6 +249,15 @@ class ControlLoraOps:
else
:
raise
ValueError
(
f
"unsupported dimensions:
{
dims
}
"
)
class
Conv3d
(
comfy
.
ops
.
Conv3d
):
pass
class
GroupNorm
(
comfy
.
ops
.
GroupNorm
):
pass
class
LayerNorm
(
comfy
.
ops
.
LayerNorm
):
pass
class
ControlLora
(
ControlNet
):
def
__init__
(
self
,
control_weights
,
global_average_pooling
=
False
,
device
=
None
):
...
...
comfy/ldm/modules/attention.py
View file @
af365e4d
...
...
@@ -83,16 +83,6 @@ class FeedForward(nn.Module):
def
forward
(
self
,
x
):
return
self
.
net
(
x
)
def
zero_module
(
module
):
"""
Zero out the parameters of a module and return it.
"""
for
p
in
module
.
parameters
():
p
.
detach
().
zero_
()
return
module
def
Normalize
(
in_channels
,
dtype
=
None
,
device
=
None
):
return
torch
.
nn
.
GroupNorm
(
num_groups
=
32
,
num_channels
=
in_channels
,
eps
=
1e-6
,
affine
=
True
,
dtype
=
dtype
,
device
=
device
)
...
...
@@ -414,10 +404,10 @@ class BasicTransformerBlock(nn.Module):
self
.
attn2
=
CrossAttention
(
query_dim
=
inner_dim
,
context_dim
=
context_dim_attn2
,
heads
=
n_heads
,
dim_head
=
d_head
,
dropout
=
dropout
,
dtype
=
dtype
,
device
=
device
,
operations
=
operations
)
# is self-attn if context is none
self
.
norm2
=
nn
.
LayerNorm
(
inner_dim
,
dtype
=
dtype
,
device
=
device
)
self
.
norm2
=
operations
.
LayerNorm
(
inner_dim
,
dtype
=
dtype
,
device
=
device
)
self
.
norm1
=
nn
.
LayerNorm
(
inner_dim
,
dtype
=
dtype
,
device
=
device
)
self
.
norm3
=
nn
.
LayerNorm
(
inner_dim
,
dtype
=
dtype
,
device
=
device
)
self
.
norm1
=
operations
.
LayerNorm
(
inner_dim
,
dtype
=
dtype
,
device
=
device
)
self
.
norm3
=
operations
.
LayerNorm
(
inner_dim
,
dtype
=
dtype
,
device
=
device
)
self
.
checkpoint
=
checkpoint
self
.
n_heads
=
n_heads
self
.
d_head
=
d_head
...
...
@@ -559,7 +549,7 @@ class SpatialTransformer(nn.Module):
context_dim
=
[
context_dim
]
*
depth
self
.
in_channels
=
in_channels
inner_dim
=
n_heads
*
d_head
self
.
norm
=
Normalize
(
in_channels
,
dtype
=
dtype
,
device
=
device
)
self
.
norm
=
operations
.
GroupNorm
(
num_groups
=
32
,
num_channels
=
in_channels
,
eps
=
1e-6
,
affine
=
True
,
dtype
=
dtype
,
device
=
device
)
if
not
use_linear
:
self
.
proj_in
=
operations
.
Conv2d
(
in_channels
,
inner_dim
,
...
...
comfy/ldm/modules/diffusionmodules/openaimodel.py
View file @
af365e4d
...
...
@@ -177,7 +177,7 @@ class ResBlock(TimestepBlock):
padding
=
kernel_size
//
2
self
.
in_layers
=
nn
.
Sequential
(
nn
.
GroupNorm
(
32
,
channels
,
dtype
=
dtype
,
device
=
device
),
operations
.
GroupNorm
(
32
,
channels
,
dtype
=
dtype
,
device
=
device
),
nn
.
SiLU
(),
operations
.
conv_nd
(
dims
,
channels
,
self
.
out_channels
,
kernel_size
,
padding
=
padding
,
dtype
=
dtype
,
device
=
device
),
)
...
...
@@ -206,12 +206,11 @@ class ResBlock(TimestepBlock):
),
)
self
.
out_layers
=
nn
.
Sequential
(
nn
.
GroupNorm
(
32
,
self
.
out_channels
,
dtype
=
dtype
,
device
=
device
),
operations
.
GroupNorm
(
32
,
self
.
out_channels
,
dtype
=
dtype
,
device
=
device
),
nn
.
SiLU
(),
nn
.
Dropout
(
p
=
dropout
),
zero_module
(
operations
.
conv_nd
(
dims
,
self
.
out_channels
,
self
.
out_channels
,
kernel_size
,
padding
=
padding
,
dtype
=
dtype
,
device
=
device
)
),
operations
.
conv_nd
(
dims
,
self
.
out_channels
,
self
.
out_channels
,
kernel_size
,
padding
=
padding
,
dtype
=
dtype
,
device
=
device
)
,
)
if
self
.
out_channels
==
channels
:
...
...
@@ -810,13 +809,13 @@ class UNetModel(nn.Module):
self
.
_feature_size
+=
ch
self
.
out
=
nn
.
Sequential
(
nn
.
GroupNorm
(
32
,
ch
,
dtype
=
self
.
dtype
,
device
=
device
),
operations
.
GroupNorm
(
32
,
ch
,
dtype
=
self
.
dtype
,
device
=
device
),
nn
.
SiLU
(),
zero_module
(
operations
.
conv_nd
(
dims
,
model_channels
,
out_channels
,
3
,
padding
=
1
,
dtype
=
self
.
dtype
,
device
=
device
)),
)
if
self
.
predict_codebook_ids
:
self
.
id_predictor
=
nn
.
Sequential
(
nn
.
GroupNorm
(
32
,
ch
,
dtype
=
self
.
dtype
,
device
=
device
),
operations
.
GroupNorm
(
32
,
ch
,
dtype
=
self
.
dtype
,
device
=
device
),
operations
.
conv_nd
(
dims
,
model_channels
,
n_embed
,
1
,
dtype
=
self
.
dtype
,
device
=
device
),
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
...
...
comfy/ops.py
View file @
af365e4d
...
...
@@ -13,6 +13,14 @@ class Conv3d(torch.nn.Conv3d):
def
reset_parameters
(
self
):
return
None
class
GroupNorm
(
torch
.
nn
.
GroupNorm
):
def
reset_parameters
(
self
):
return
None
class
LayerNorm
(
torch
.
nn
.
LayerNorm
):
def
reset_parameters
(
self
):
return
None
def
conv_nd
(
dims
,
*
args
,
**
kwargs
):
if
dims
==
2
:
return
Conv2d
(
*
args
,
**
kwargs
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment