Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
ComfyUI
Commits
9a55dadb
Commit
9a55dadb
authored
Oct 13, 2023
by
comfyanonymous
Browse files
Refactor code so model can be a dtype other than fp32 or fp16.
parent
fee3b0c0
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
39 additions
and
41 deletions
+39
-41
comfy/cldm/cldm.py
comfy/cldm/cldm.py
+2
-4
comfy/controlnet.py
comfy/controlnet.py
+5
-6
comfy/ldm/modules/diffusionmodules/openaimodel.py
comfy/ldm/modules/diffusionmodules/openaimodel.py
+2
-4
comfy/model_detection.py
comfy/model_detection.py
+16
-16
comfy/model_management.py
comfy/model_management.py
+5
-0
comfy/sd.py
comfy/sd.py
+9
-11
No files found.
comfy/cldm/cldm.py
View file @
9a55dadb
...
...
@@ -34,8 +34,7 @@ class ControlNet(nn.Module):
dims
=
2
,
num_classes
=
None
,
use_checkpoint
=
False
,
use_fp16
=
False
,
use_bf16
=
False
,
dtype
=
torch
.
float32
,
num_heads
=-
1
,
num_head_channels
=-
1
,
num_heads_upsample
=-
1
,
...
...
@@ -108,8 +107,7 @@ class ControlNet(nn.Module):
self
.
conv_resample
=
conv_resample
self
.
num_classes
=
num_classes
self
.
use_checkpoint
=
use_checkpoint
self
.
dtype
=
th
.
float16
if
use_fp16
else
th
.
float32
self
.
dtype
=
th
.
bfloat16
if
use_bf16
else
self
.
dtype
self
.
dtype
=
dtype
self
.
num_heads
=
num_heads
self
.
num_head_channels
=
num_head_channels
self
.
num_heads_upsample
=
num_heads_upsample
...
...
comfy/controlnet.py
View file @
9a55dadb
...
...
@@ -292,8 +292,8 @@ def load_controlnet(ckpt_path, model=None):
controlnet_config
=
None
if
"controlnet_cond_embedding.conv_in.weight"
in
controlnet_data
:
#diffusers format
u
se_fp16
=
comfy
.
model_management
.
should_use_fp16
()
controlnet_config
=
comfy
.
model_detection
.
unet_config_from_diffusers_unet
(
controlnet_data
,
u
se_fp16
)
u
net_dtype
=
comfy
.
model_management
.
unet_dtype
()
controlnet_config
=
comfy
.
model_detection
.
unet_config_from_diffusers_unet
(
controlnet_data
,
u
net_dtype
)
diffusers_keys
=
comfy
.
utils
.
unet_to_diffusers
(
controlnet_config
)
diffusers_keys
[
"controlnet_mid_block.weight"
]
=
"middle_block_out.0.weight"
diffusers_keys
[
"controlnet_mid_block.bias"
]
=
"middle_block_out.0.bias"
...
...
@@ -353,8 +353,8 @@ def load_controlnet(ckpt_path, model=None):
return
net
if
controlnet_config
is
None
:
u
se_fp16
=
comfy
.
model_management
.
should_use_fp16
()
controlnet_config
=
comfy
.
model_detection
.
model_config_from_unet
(
controlnet_data
,
prefix
,
u
se_fp16
,
True
).
unet_config
u
net_dtype
=
comfy
.
model_management
.
unet_dtype
()
controlnet_config
=
comfy
.
model_detection
.
model_config_from_unet
(
controlnet_data
,
prefix
,
u
net_dtype
,
True
).
unet_config
controlnet_config
.
pop
(
"out_channels"
)
controlnet_config
[
"hint_channels"
]
=
controlnet_data
[
"{}input_hint_block.0.weight"
.
format
(
prefix
)].
shape
[
1
]
control_model
=
comfy
.
cldm
.
cldm
.
ControlNet
(
**
controlnet_config
)
...
...
@@ -383,8 +383,7 @@ def load_controlnet(ckpt_path, model=None):
missing
,
unexpected
=
control_model
.
load_state_dict
(
controlnet_data
,
strict
=
False
)
print
(
missing
,
unexpected
)
if
use_fp16
:
control_model
=
control_model
.
half
()
control_model
=
control_model
.
to
(
unet_dtype
)
global_average_pooling
=
False
filename
=
os
.
path
.
splitext
(
ckpt_path
)[
0
]
...
...
comfy/ldm/modules/diffusionmodules/openaimodel.py
View file @
9a55dadb
...
...
@@ -296,8 +296,7 @@ class UNetModel(nn.Module):
dims
=
2
,
num_classes
=
None
,
use_checkpoint
=
False
,
use_fp16
=
False
,
use_bf16
=
False
,
dtype
=
th
.
float32
,
num_heads
=-
1
,
num_head_channels
=-
1
,
num_heads_upsample
=-
1
,
...
...
@@ -370,8 +369,7 @@ class UNetModel(nn.Module):
self
.
conv_resample
=
conv_resample
self
.
num_classes
=
num_classes
self
.
use_checkpoint
=
use_checkpoint
self
.
dtype
=
th
.
float16
if
use_fp16
else
th
.
float32
self
.
dtype
=
th
.
bfloat16
if
use_bf16
else
self
.
dtype
self
.
dtype
=
dtype
self
.
num_heads
=
num_heads
self
.
num_head_channels
=
num_head_channels
self
.
num_heads_upsample
=
num_heads_upsample
...
...
comfy/model_detection.py
View file @
9a55dadb
...
...
@@ -14,7 +14,7 @@ def count_blocks(state_dict_keys, prefix_string):
count
+=
1
return
count
def
detect_unet_config
(
state_dict
,
key_prefix
,
use_fp16
):
def
detect_unet_config
(
state_dict
,
key_prefix
,
dtype
):
state_dict_keys
=
list
(
state_dict
.
keys
())
unet_config
=
{
...
...
@@ -32,7 +32,7 @@ def detect_unet_config(state_dict, key_prefix, use_fp16):
else
:
unet_config
[
"adm_in_channels"
]
=
None
unet_config
[
"
use_fp16"
]
=
use_fp16
unet_config
[
"
dtype"
]
=
dtype
model_channels
=
state_dict
[
'{}input_blocks.0.0.weight'
.
format
(
key_prefix
)].
shape
[
0
]
in_channels
=
state_dict
[
'{}input_blocks.0.0.weight'
.
format
(
key_prefix
)].
shape
[
1
]
...
...
@@ -116,15 +116,15 @@ def model_config_from_unet_config(unet_config):
print
(
"no match"
,
unet_config
)
return
None
def
model_config_from_unet
(
state_dict
,
unet_key_prefix
,
use_fp16
,
use_base_if_no_match
=
False
):
unet_config
=
detect_unet_config
(
state_dict
,
unet_key_prefix
,
use_fp16
)
def
model_config_from_unet
(
state_dict
,
unet_key_prefix
,
dtype
,
use_base_if_no_match
=
False
):
unet_config
=
detect_unet_config
(
state_dict
,
unet_key_prefix
,
dtype
)
model_config
=
model_config_from_unet_config
(
unet_config
)
if
model_config
is
None
and
use_base_if_no_match
:
return
comfy
.
supported_models_base
.
BASE
(
unet_config
)
else
:
return
model_config
def
unet_config_from_diffusers_unet
(
state_dict
,
use_fp16
):
def
unet_config_from_diffusers_unet
(
state_dict
,
dtype
):
match
=
{}
attention_resolutions
=
[]
...
...
@@ -147,47 +147,47 @@ def unet_config_from_diffusers_unet(state_dict, use_fp16):
match
[
"adm_in_channels"
]
=
state_dict
[
"add_embedding.linear_1.weight"
].
shape
[
1
]
SDXL
=
{
'use_checkpoint'
:
False
,
'image_size'
:
32
,
'out_channels'
:
4
,
'use_spatial_transformer'
:
True
,
'legacy'
:
False
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2816
,
'
use_fp16'
:
use_fp16
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2816
,
'
dtype'
:
dtype
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_res_blocks'
:
2
,
'attention_resolutions'
:
[
2
,
4
],
'transformer_depth'
:
[
0
,
2
,
10
],
'channel_mult'
:
[
1
,
2
,
4
],
'transformer_depth_middle'
:
10
,
'use_linear_in_transformer'
:
True
,
'context_dim'
:
2048
,
"num_head_channels"
:
64
}
SDXL_refiner
=
{
'use_checkpoint'
:
False
,
'image_size'
:
32
,
'out_channels'
:
4
,
'use_spatial_transformer'
:
True
,
'legacy'
:
False
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2560
,
'
use_fp16'
:
use_fp16
,
'in_channels'
:
4
,
'model_channels'
:
384
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2560
,
'
dtype'
:
dtype
,
'in_channels'
:
4
,
'model_channels'
:
384
,
'num_res_blocks'
:
2
,
'attention_resolutions'
:
[
2
,
4
],
'transformer_depth'
:
[
0
,
4
,
4
,
0
],
'channel_mult'
:
[
1
,
2
,
4
,
4
],
'transformer_depth_middle'
:
4
,
'use_linear_in_transformer'
:
True
,
'context_dim'
:
1280
,
"num_head_channels"
:
64
}
SD21
=
{
'use_checkpoint'
:
False
,
'image_size'
:
32
,
'out_channels'
:
4
,
'use_spatial_transformer'
:
True
,
'legacy'
:
False
,
'adm_in_channels'
:
None
,
'
use_fp16'
:
use_fp16
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_res_blocks'
:
2
,
'adm_in_channels'
:
None
,
'
dtype'
:
dtype
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_res_blocks'
:
2
,
'attention_resolutions'
:
[
1
,
2
,
4
],
'transformer_depth'
:
[
1
,
1
,
1
,
0
],
'channel_mult'
:
[
1
,
2
,
4
,
4
],
'transformer_depth_middle'
:
1
,
'use_linear_in_transformer'
:
True
,
'context_dim'
:
1024
,
"num_head_channels"
:
64
}
SD21_uncliph
=
{
'use_checkpoint'
:
False
,
'image_size'
:
32
,
'out_channels'
:
4
,
'use_spatial_transformer'
:
True
,
'legacy'
:
False
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2048
,
'
use_fp16'
:
use_fp16
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2048
,
'
dtype'
:
dtype
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_res_blocks'
:
2
,
'attention_resolutions'
:
[
1
,
2
,
4
],
'transformer_depth'
:
[
1
,
1
,
1
,
0
],
'channel_mult'
:
[
1
,
2
,
4
,
4
],
'transformer_depth_middle'
:
1
,
'use_linear_in_transformer'
:
True
,
'context_dim'
:
1024
,
"num_head_channels"
:
64
}
SD21_unclipl
=
{
'use_checkpoint'
:
False
,
'image_size'
:
32
,
'out_channels'
:
4
,
'use_spatial_transformer'
:
True
,
'legacy'
:
False
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
1536
,
'
use_fp16'
:
use_fp16
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
1536
,
'
dtype'
:
dtype
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_res_blocks'
:
2
,
'attention_resolutions'
:
[
1
,
2
,
4
],
'transformer_depth'
:
[
1
,
1
,
1
,
0
],
'channel_mult'
:
[
1
,
2
,
4
,
4
],
'transformer_depth_middle'
:
1
,
'use_linear_in_transformer'
:
True
,
'context_dim'
:
1024
}
SD15
=
{
'use_checkpoint'
:
False
,
'image_size'
:
32
,
'out_channels'
:
4
,
'use_spatial_transformer'
:
True
,
'legacy'
:
False
,
'adm_in_channels'
:
None
,
'
use_fp16'
:
use_fp16
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_res_blocks'
:
2
,
'adm_in_channels'
:
None
,
'
dtype'
:
dtype
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_res_blocks'
:
2
,
'attention_resolutions'
:
[
1
,
2
,
4
],
'transformer_depth'
:
[
1
,
1
,
1
,
0
],
'channel_mult'
:
[
1
,
2
,
4
,
4
],
'transformer_depth_middle'
:
1
,
'use_linear_in_transformer'
:
False
,
'context_dim'
:
768
,
"num_heads"
:
8
}
SDXL_mid_cnet
=
{
'use_checkpoint'
:
False
,
'image_size'
:
32
,
'out_channels'
:
4
,
'use_spatial_transformer'
:
True
,
'legacy'
:
False
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2816
,
'
use_fp16'
:
use_fp16
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2816
,
'
dtype'
:
dtype
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_res_blocks'
:
2
,
'attention_resolutions'
:
[
4
],
'transformer_depth'
:
[
0
,
0
,
1
],
'channel_mult'
:
[
1
,
2
,
4
],
'transformer_depth_middle'
:
1
,
'use_linear_in_transformer'
:
True
,
'context_dim'
:
2048
,
"num_head_channels"
:
64
}
SDXL_small_cnet
=
{
'use_checkpoint'
:
False
,
'image_size'
:
32
,
'out_channels'
:
4
,
'use_spatial_transformer'
:
True
,
'legacy'
:
False
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2816
,
'
use_fp16'
:
use_fp16
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2816
,
'
dtype'
:
dtype
,
'in_channels'
:
4
,
'model_channels'
:
320
,
'num_res_blocks'
:
2
,
'attention_resolutions'
:
[],
'transformer_depth'
:
[
0
,
0
,
0
],
'channel_mult'
:
[
1
,
2
,
4
],
'transformer_depth_middle'
:
0
,
'use_linear_in_transformer'
:
True
,
"num_head_channels"
:
64
,
'context_dim'
:
1
}
SDXL_diffusers_inpaint
=
{
'use_checkpoint'
:
False
,
'image_size'
:
32
,
'out_channels'
:
4
,
'use_spatial_transformer'
:
True
,
'legacy'
:
False
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2816
,
'
use_fp16'
:
use_fp16
,
'in_channels'
:
9
,
'model_channels'
:
320
,
'num_classes'
:
'sequential'
,
'adm_in_channels'
:
2816
,
'
dtype'
:
dtype
,
'in_channels'
:
9
,
'model_channels'
:
320
,
'num_res_blocks'
:
2
,
'attention_resolutions'
:
[
2
,
4
],
'transformer_depth'
:
[
0
,
2
,
10
],
'channel_mult'
:
[
1
,
2
,
4
],
'transformer_depth_middle'
:
10
,
'use_linear_in_transformer'
:
True
,
'context_dim'
:
2048
,
"num_head_channels"
:
64
}
...
...
@@ -203,8 +203,8 @@ def unet_config_from_diffusers_unet(state_dict, use_fp16):
return
unet_config
return
None
def
model_config_from_diffusers_unet
(
state_dict
,
use_fp16
):
unet_config
=
unet_config_from_diffusers_unet
(
state_dict
,
use_fp16
)
def
model_config_from_diffusers_unet
(
state_dict
,
dtype
):
unet_config
=
unet_config_from_diffusers_unet
(
state_dict
,
dtype
)
if
unet_config
is
not
None
:
return
model_config_from_unet_config
(
unet_config
)
return
None
comfy/model_management.py
View file @
9a55dadb
...
...
@@ -448,6 +448,11 @@ def unet_inital_load_device(parameters, dtype):
else
:
return
cpu_dev
def
unet_dtype
(
device
=
None
,
model_params
=
0
):
if
should_use_fp16
(
device
=
device
,
model_params
=
model_params
):
return
torch
.
float16
return
torch
.
float32
def
text_encoder_offload_device
():
if
args
.
gpu_only
:
return
get_torch_device
()
...
...
comfy/sd.py
View file @
9a55dadb
...
...
@@ -327,7 +327,9 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
if
"params"
in
model_config_params
[
"unet_config"
]:
unet_config
=
model_config_params
[
"unet_config"
][
"params"
]
if
"use_fp16"
in
unet_config
:
fp16
=
unet_config
[
"use_fp16"
]
fp16
=
unet_config
.
pop
(
"use_fp16"
)
if
fp16
:
unet_config
[
"dtype"
]
=
torch
.
float16
noise_aug_config
=
None
if
"noise_aug_config"
in
model_config_params
:
...
...
@@ -405,12 +407,12 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
clip_target
=
None
parameters
=
comfy
.
utils
.
calculate_parameters
(
sd
,
"model.diffusion_model."
)
fp16
=
model_management
.
should_use_fp16
(
model_params
=
parameters
)
unet_dtype
=
model_management
.
unet_dtype
(
model_params
=
parameters
)
class
WeightsLoader
(
torch
.
nn
.
Module
):
pass
model_config
=
model_detection
.
model_config_from_unet
(
sd
,
"model.diffusion_model."
,
fp16
)
model_config
=
model_detection
.
model_config_from_unet
(
sd
,
"model.diffusion_model."
,
unet_dtype
)
if
model_config
is
None
:
raise
RuntimeError
(
"ERROR: Could not detect model type of: {}"
.
format
(
ckpt_path
))
...
...
@@ -418,12 +420,8 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
if
output_clipvision
:
clipvision
=
clip_vision
.
load_clipvision_from_sd
(
sd
,
model_config
.
clip_vision_prefix
,
True
)
dtype
=
torch
.
float32
if
fp16
:
dtype
=
torch
.
float16
if
output_model
:
inital_load_device
=
model_management
.
unet_inital_load_device
(
parameters
,
dtype
)
inital_load_device
=
model_management
.
unet_inital_load_device
(
parameters
,
unet_
dtype
)
offload_device
=
model_management
.
unet_offload_device
()
model
=
model_config
.
get_model
(
sd
,
"model.diffusion_model."
,
device
=
inital_load_device
)
model
.
load_model_weights
(
sd
,
"model.diffusion_model."
)
...
...
@@ -458,15 +456,15 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
def
load_unet
(
unet_path
):
#load unet in diffusers format
sd
=
comfy
.
utils
.
load_torch_file
(
unet_path
)
parameters
=
comfy
.
utils
.
calculate_parameters
(
sd
)
fp16
=
model_management
.
should_use_fp16
(
model_params
=
parameters
)
unet_dtype
=
model_management
.
unet_dtype
(
model_params
=
parameters
)
if
"input_blocks.0.0.weight"
in
sd
:
#ldm
model_config
=
model_detection
.
model_config_from_unet
(
sd
,
""
,
fp16
)
model_config
=
model_detection
.
model_config_from_unet
(
sd
,
""
,
unet_dtype
)
if
model_config
is
None
:
raise
RuntimeError
(
"ERROR: Could not detect model type of: {}"
.
format
(
unet_path
))
new_sd
=
sd
else
:
#diffusers
model_config
=
model_detection
.
model_config_from_diffusers_unet
(
sd
,
fp16
)
model_config
=
model_detection
.
model_config_from_diffusers_unet
(
sd
,
unet_dtype
)
if
model_config
is
None
:
print
(
"ERROR UNSUPPORTED UNET"
,
unet_path
)
return
None
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment