Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
ComfyUI
Commits
8c649357
Commit
8c649357
authored
Jan 03, 2024
by
comfyanonymous
Browse files
Implement noise augmentation for SD 4X upscale model.
parent
ef4f6037
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
33 additions
and
14 deletions
+33
-14
comfy/ldm/modules/diffusionmodules/openaimodel.py
comfy/ldm/modules/diffusionmodules/openaimodel.py
+1
-1
comfy/ldm/modules/diffusionmodules/upscaling.py
comfy/ldm/modules/diffusionmodules/upscaling.py
+8
-4
comfy/model_base.py
comfy/model_base.py
+17
-5
comfy/samplers.py
comfy/samplers.py
+2
-2
comfy/supported_models.py
comfy/supported_models.py
+1
-0
comfy_extras/nodes_sdupscale.py
comfy_extras/nodes_sdupscale.py
+4
-2
No files found.
comfy/ldm/modules/diffusionmodules/openaimodel.py
View file @
8c649357
...
...
@@ -498,7 +498,7 @@ class UNetModel(nn.Module):
if
self
.
num_classes
is
not
None
:
if
isinstance
(
self
.
num_classes
,
int
):
self
.
label_emb
=
nn
.
Embedding
(
num_classes
,
time_embed_dim
)
self
.
label_emb
=
nn
.
Embedding
(
num_classes
,
time_embed_dim
,
dtype
=
self
.
dtype
,
device
=
device
)
elif
self
.
num_classes
==
"continuous"
:
print
(
"setting up linear c_adm embedding layer"
)
self
.
label_emb
=
nn
.
Linear
(
1
,
time_embed_dim
)
...
...
comfy/ldm/modules/diffusionmodules/upscaling.py
View file @
8c649357
...
...
@@ -41,8 +41,12 @@ class AbstractLowScaleModel(nn.Module):
self
.
register_buffer
(
'sqrt_recip_alphas_cumprod'
,
to_torch
(
np
.
sqrt
(
1.
/
alphas_cumprod
)))
self
.
register_buffer
(
'sqrt_recipm1_alphas_cumprod'
,
to_torch
(
np
.
sqrt
(
1.
/
alphas_cumprod
-
1
)))
def
q_sample
(
self
,
x_start
,
t
,
noise
=
None
):
noise
=
default
(
noise
,
lambda
:
torch
.
randn_like
(
x_start
))
def
q_sample
(
self
,
x_start
,
t
,
noise
=
None
,
seed
=
None
):
if
noise
is
None
:
if
seed
is
None
:
noise
=
torch
.
randn_like
(
x_start
)
else
:
noise
=
torch
.
randn
(
x_start
.
size
(),
dtype
=
x_start
.
dtype
,
layout
=
x_start
.
layout
,
generator
=
torch
.
manual_seed
(
seed
)).
to
(
x_start
.
device
)
return
(
extract_into_tensor
(
self
.
sqrt_alphas_cumprod
.
to
(
x_start
.
device
),
t
,
x_start
.
shape
)
*
x_start
+
extract_into_tensor
(
self
.
sqrt_one_minus_alphas_cumprod
.
to
(
x_start
.
device
),
t
,
x_start
.
shape
)
*
noise
)
...
...
@@ -69,12 +73,12 @@ class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
super
().
__init__
(
noise_schedule_config
=
noise_schedule_config
)
self
.
max_noise_level
=
max_noise_level
def
forward
(
self
,
x
,
noise_level
=
None
):
def
forward
(
self
,
x
,
noise_level
=
None
,
seed
=
None
):
if
noise_level
is
None
:
noise_level
=
torch
.
randint
(
0
,
self
.
max_noise_level
,
(
x
.
shape
[
0
],),
device
=
x
.
device
).
long
()
else
:
assert
isinstance
(
noise_level
,
torch
.
Tensor
)
z
=
self
.
q_sample
(
x
,
noise_level
)
z
=
self
.
q_sample
(
x
,
noise_level
,
seed
=
seed
)
return
z
,
noise_level
...
...
comfy/model_base.py
View file @
8c649357
import
torch
from
comfy.ldm.modules.diffusionmodules.openaimodel
import
UNetModel
from
comfy.ldm.modules.diffusionmodules.openaimodel
import
UNetModel
,
Timestep
from
comfy.ldm.modules.encoders.noise_aug_modules
import
CLIPEmbeddingNoiseAugmentation
from
comfy.ldm.modules.diffusionmodules.
openaimodel
import
Timestep
from
comfy.ldm.modules.diffusionmodules.
upscaling
import
ImageConcatWithNoiseAugmentation
import
comfy.model_management
import
comfy.conds
import
comfy.ops
...
...
@@ -78,8 +78,9 @@ class BaseModel(torch.nn.Module):
extra_conds
=
{}
for
o
in
kwargs
:
extra
=
kwargs
[
o
]
if
hasattr
(
extra
,
"to"
):
extra
=
extra
.
to
(
dtype
)
if
hasattr
(
extra
,
"dtype"
):
if
extra
.
dtype
!=
torch
.
int
and
extra
.
dtype
!=
torch
.
long
:
extra
=
extra
.
to
(
dtype
)
extra_conds
[
o
]
=
extra
model_output
=
self
.
diffusion_model
(
xc
,
t
,
context
=
context
,
control
=
control
,
transformer_options
=
transformer_options
,
**
extra_conds
).
float
()
...
...
@@ -368,20 +369,31 @@ class Stable_Zero123(BaseModel):
class
SD_X4Upscaler
(
BaseModel
):
def
__init__
(
self
,
model_config
,
model_type
=
ModelType
.
V_PREDICTION
,
device
=
None
):
super
().
__init__
(
model_config
,
model_type
,
device
=
device
)
self
.
noise_augmentor
=
ImageConcatWithNoiseAugmentation
(
noise_schedule_config
=
{
"linear_start"
:
0.0001
,
"linear_end"
:
0.02
},
max_noise_level
=
350
)
def
extra_conds
(
self
,
**
kwargs
):
out
=
{}
image
=
kwargs
.
get
(
"concat_image"
,
None
)
noise
=
kwargs
.
get
(
"noise"
,
None
)
noise_augment
=
kwargs
.
get
(
"noise_augmentation"
,
0.0
)
device
=
kwargs
[
"device"
]
seed
=
kwargs
[
"seed"
]
-
10
noise_level
=
round
((
self
.
noise_augmentor
.
max_noise_level
)
*
noise_augment
)
if
image
is
None
:
image
=
torch
.
zeros_like
(
noise
)[:,:
3
]
if
image
.
shape
[
1
:]
!=
noise
.
shape
[
1
:]:
image
=
utils
.
common_upscale
(
image
,
noise
.
shape
[
-
1
],
noise
.
shape
[
-
2
],
"bilinear"
,
"center"
)
image
=
utils
.
common_upscale
(
image
.
to
(
device
),
noise
.
shape
[
-
1
],
noise
.
shape
[
-
2
],
"bilinear"
,
"center"
)
noise_level
=
torch
.
tensor
([
noise_level
],
device
=
device
)
if
noise_augment
>
0
:
image
,
noise_level
=
self
.
noise_augmentor
(
image
.
to
(
device
),
noise_level
=
noise_level
,
seed
=
seed
)
image
=
utils
.
resize_to_batch_size
(
image
,
noise
.
shape
[
0
])
out
[
'c_concat'
]
=
comfy
.
conds
.
CONDNoiseShape
(
image
)
out
[
'y'
]
=
comfy
.
conds
.
CONDRegular
(
noise_level
)
return
out
comfy/samplers.py
View file @
8c649357
...
...
@@ -603,8 +603,8 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
latent_image
=
model
.
process_latent_in
(
latent_image
)
if
hasattr
(
model
,
'extra_conds'
):
positive
=
encode_model_conds
(
model
.
extra_conds
,
positive
,
noise
,
device
,
"positive"
,
latent_image
=
latent_image
,
denoise_mask
=
denoise_mask
)
negative
=
encode_model_conds
(
model
.
extra_conds
,
negative
,
noise
,
device
,
"negative"
,
latent_image
=
latent_image
,
denoise_mask
=
denoise_mask
)
positive
=
encode_model_conds
(
model
.
extra_conds
,
positive
,
noise
,
device
,
"positive"
,
latent_image
=
latent_image
,
denoise_mask
=
denoise_mask
,
seed
=
seed
)
negative
=
encode_model_conds
(
model
.
extra_conds
,
negative
,
noise
,
device
,
"negative"
,
latent_image
=
latent_image
,
denoise_mask
=
denoise_mask
,
seed
=
seed
)
#make sure each cond area has an opposite one with the same area
for
c
in
positive
:
...
...
comfy/supported_models.py
View file @
8c649357
...
...
@@ -290,6 +290,7 @@ class SD_X4Upscaler(SD20):
unet_extra_config
=
{
"disable_self_attentions"
:
[
True
,
True
,
True
,
False
],
"num_classes"
:
1000
,
"num_heads"
:
8
,
"num_head_channels"
:
-
1
,
}
...
...
comfy_extras/nodes_sdupscale.py
View file @
8c649357
...
...
@@ -9,7 +9,7 @@ class SD_4XUpscale_Conditioning:
"positive"
:
(
"CONDITIONING"
,),
"negative"
:
(
"CONDITIONING"
,),
"scale_ratio"
:
(
"FLOAT"
,
{
"default"
:
4.0
,
"min"
:
0.0
,
"max"
:
10.0
,
"step"
:
0.01
}),
#
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1
0
.0, "step": 0.01}),
#TODO
"noise_augmentation"
:
(
"FLOAT"
,
{
"default"
:
0.0
,
"min"
:
0.0
,
"max"
:
1.0
,
"step"
:
0.
0
01
}),
}}
RETURN_TYPES
=
(
"CONDITIONING"
,
"CONDITIONING"
,
"LATENT"
)
RETURN_NAMES
=
(
"positive"
,
"negative"
,
"latent"
)
...
...
@@ -18,7 +18,7 @@ class SD_4XUpscale_Conditioning:
CATEGORY
=
"conditioning/upscale_diffusion"
def
encode
(
self
,
images
,
positive
,
negative
,
scale_ratio
):
def
encode
(
self
,
images
,
positive
,
negative
,
scale_ratio
,
noise_augmentation
):
width
=
max
(
1
,
round
(
images
.
shape
[
-
2
]
*
scale_ratio
))
height
=
max
(
1
,
round
(
images
.
shape
[
-
3
]
*
scale_ratio
))
...
...
@@ -30,11 +30,13 @@ class SD_4XUpscale_Conditioning:
for
t
in
positive
:
n
=
[
t
[
0
],
t
[
1
].
copy
()]
n
[
1
][
'concat_image'
]
=
pixels
n
[
1
][
'noise_augmentation'
]
=
noise_augmentation
out_cp
.
append
(
n
)
for
t
in
negative
:
n
=
[
t
[
0
],
t
[
1
].
copy
()]
n
[
1
][
'concat_image'
]
=
pixels
n
[
1
][
'noise_augmentation'
]
=
noise_augmentation
out_cn
.
append
(
n
)
latent
=
torch
.
zeros
([
images
.
shape
[
0
],
4
,
height
//
4
,
width
//
4
])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment