Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
ComfyUI
Commits
7310290f
Commit
7310290f
authored
May 23, 2023
by
comfyanonymous
Browse files
Pull in latest upscale model code from chainner.
parent
c00bb1a0
Changes
12
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
1530 additions
and
2 deletions
+1530
-2
comfy_extras/chainner_models/architecture/OmniSR/ChannelAttention.py
...s/chainner_models/architecture/OmniSR/ChannelAttention.py
+110
-0
comfy_extras/chainner_models/architecture/OmniSR/LICENSE
comfy_extras/chainner_models/architecture/OmniSR/LICENSE
+201
-0
comfy_extras/chainner_models/architecture/OmniSR/OSA.py
comfy_extras/chainner_models/architecture/OmniSR/OSA.py
+577
-0
comfy_extras/chainner_models/architecture/OmniSR/OSAG.py
comfy_extras/chainner_models/architecture/OmniSR/OSAG.py
+60
-0
comfy_extras/chainner_models/architecture/OmniSR/OmniSR.py
comfy_extras/chainner_models/architecture/OmniSR/OmniSR.py
+133
-0
comfy_extras/chainner_models/architecture/OmniSR/esa.py
comfy_extras/chainner_models/architecture/OmniSR/esa.py
+294
-0
comfy_extras/chainner_models/architecture/OmniSR/layernorm.py
...y_extras/chainner_models/architecture/OmniSR/layernorm.py
+70
-0
comfy_extras/chainner_models/architecture/OmniSR/pixelshuffle.py
...xtras/chainner_models/architecture/OmniSR/pixelshuffle.py
+31
-0
comfy_extras/chainner_models/architecture/RRDB.py
comfy_extras/chainner_models/architecture/RRDB.py
+16
-1
comfy_extras/chainner_models/architecture/block.py
comfy_extras/chainner_models/architecture/block.py
+30
-0
comfy_extras/chainner_models/model_loading.py
comfy_extras/chainner_models/model_loading.py
+5
-0
comfy_extras/chainner_models/types.py
comfy_extras/chainner_models/types.py
+3
-1
No files found.
comfy_extras/chainner_models/architecture/OmniSR/ChannelAttention.py
0 → 100644
View file @
7310290f
import
math
import
torch.nn
as
nn
class
CA_layer
(
nn
.
Module
):
def
__init__
(
self
,
channel
,
reduction
=
16
):
super
(
CA_layer
,
self
).
__init__
()
# global average pooling
self
.
gap
=
nn
.
AdaptiveAvgPool2d
(
1
)
self
.
fc
=
nn
.
Sequential
(
nn
.
Conv2d
(
channel
,
channel
//
reduction
,
kernel_size
=
(
1
,
1
),
bias
=
False
),
nn
.
GELU
(),
nn
.
Conv2d
(
channel
//
reduction
,
channel
,
kernel_size
=
(
1
,
1
),
bias
=
False
),
# nn.Sigmoid()
)
def
forward
(
self
,
x
):
y
=
self
.
fc
(
self
.
gap
(
x
))
return
x
*
y
.
expand_as
(
x
)
class
Simple_CA_layer
(
nn
.
Module
):
def
__init__
(
self
,
channel
):
super
(
Simple_CA_layer
,
self
).
__init__
()
self
.
gap
=
nn
.
AdaptiveAvgPool2d
(
1
)
self
.
fc
=
nn
.
Conv2d
(
in_channels
=
channel
,
out_channels
=
channel
,
kernel_size
=
1
,
padding
=
0
,
stride
=
1
,
groups
=
1
,
bias
=
True
,
)
def
forward
(
self
,
x
):
return
x
*
self
.
fc
(
self
.
gap
(
x
))
class
ECA_layer
(
nn
.
Module
):
"""Constructs a ECA module.
Args:
channel: Number of channels of the input feature map
k_size: Adaptive selection of kernel size
"""
def
__init__
(
self
,
channel
):
super
(
ECA_layer
,
self
).
__init__
()
b
=
1
gamma
=
2
k_size
=
int
(
abs
(
math
.
log
(
channel
,
2
)
+
b
)
/
gamma
)
k_size
=
k_size
if
k_size
%
2
else
k_size
+
1
self
.
avg_pool
=
nn
.
AdaptiveAvgPool2d
(
1
)
self
.
conv
=
nn
.
Conv1d
(
1
,
1
,
kernel_size
=
k_size
,
padding
=
(
k_size
-
1
)
//
2
,
bias
=
False
)
# self.sigmoid = nn.Sigmoid()
def
forward
(
self
,
x
):
# x: input features with shape [b, c, h, w]
# b, c, h, w = x.size()
# feature descriptor on the global spatial information
y
=
self
.
avg_pool
(
x
)
# Two different branches of ECA module
y
=
self
.
conv
(
y
.
squeeze
(
-
1
).
transpose
(
-
1
,
-
2
)).
transpose
(
-
1
,
-
2
).
unsqueeze
(
-
1
)
# Multi-scale information fusion
# y = self.sigmoid(y)
return
x
*
y
.
expand_as
(
x
)
class
ECA_MaxPool_layer
(
nn
.
Module
):
"""Constructs a ECA module.
Args:
channel: Number of channels of the input feature map
k_size: Adaptive selection of kernel size
"""
def
__init__
(
self
,
channel
):
super
(
ECA_MaxPool_layer
,
self
).
__init__
()
b
=
1
gamma
=
2
k_size
=
int
(
abs
(
math
.
log
(
channel
,
2
)
+
b
)
/
gamma
)
k_size
=
k_size
if
k_size
%
2
else
k_size
+
1
self
.
max_pool
=
nn
.
AdaptiveMaxPool2d
(
1
)
self
.
conv
=
nn
.
Conv1d
(
1
,
1
,
kernel_size
=
k_size
,
padding
=
(
k_size
-
1
)
//
2
,
bias
=
False
)
# self.sigmoid = nn.Sigmoid()
def
forward
(
self
,
x
):
# x: input features with shape [b, c, h, w]
# b, c, h, w = x.size()
# feature descriptor on the global spatial information
y
=
self
.
max_pool
(
x
)
# Two different branches of ECA module
y
=
self
.
conv
(
y
.
squeeze
(
-
1
).
transpose
(
-
1
,
-
2
)).
transpose
(
-
1
,
-
2
).
unsqueeze
(
-
1
)
# Multi-scale information fusion
# y = self.sigmoid(y)
return
x
*
y
.
expand_as
(
x
)
comfy_extras/chainner_models/architecture/OmniSR/LICENSE
0 → 100644
View file @
7310290f
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
comfy_extras/chainner_models/architecture/OmniSR/OSA.py
0 → 100644
View file @
7310290f
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: OSA.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Sunday, 23rd April 2023 3:07:42 pm
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import
torch
import
torch.nn.functional
as
F
from
einops
import
rearrange
,
repeat
from
einops.layers.torch
import
Rearrange
,
Reduce
from
torch
import
einsum
,
nn
from
.layernorm
import
LayerNorm2d
# helpers
def
exists
(
val
):
return
val
is
not
None
def
default
(
val
,
d
):
return
val
if
exists
(
val
)
else
d
def
cast_tuple
(
val
,
length
=
1
):
return
val
if
isinstance
(
val
,
tuple
)
else
((
val
,)
*
length
)
# helper classes
class
PreNormResidual
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
fn
):
super
().
__init__
()
self
.
norm
=
nn
.
LayerNorm
(
dim
)
self
.
fn
=
fn
def
forward
(
self
,
x
):
return
self
.
fn
(
self
.
norm
(
x
))
+
x
class
Conv_PreNormResidual
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
fn
):
super
().
__init__
()
self
.
norm
=
LayerNorm2d
(
dim
)
self
.
fn
=
fn
def
forward
(
self
,
x
):
return
self
.
fn
(
self
.
norm
(
x
))
+
x
class
FeedForward
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
mult
=
2
,
dropout
=
0.0
):
super
().
__init__
()
inner_dim
=
int
(
dim
*
mult
)
self
.
net
=
nn
.
Sequential
(
nn
.
Linear
(
dim
,
inner_dim
),
nn
.
GELU
(),
nn
.
Dropout
(
dropout
),
nn
.
Linear
(
inner_dim
,
dim
),
nn
.
Dropout
(
dropout
),
)
def
forward
(
self
,
x
):
return
self
.
net
(
x
)
class
Conv_FeedForward
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
mult
=
2
,
dropout
=
0.0
):
super
().
__init__
()
inner_dim
=
int
(
dim
*
mult
)
self
.
net
=
nn
.
Sequential
(
nn
.
Conv2d
(
dim
,
inner_dim
,
1
,
1
,
0
),
nn
.
GELU
(),
nn
.
Dropout
(
dropout
),
nn
.
Conv2d
(
inner_dim
,
dim
,
1
,
1
,
0
),
nn
.
Dropout
(
dropout
),
)
def
forward
(
self
,
x
):
return
self
.
net
(
x
)
class
Gated_Conv_FeedForward
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
mult
=
1
,
bias
=
False
,
dropout
=
0.0
):
super
().
__init__
()
hidden_features
=
int
(
dim
*
mult
)
self
.
project_in
=
nn
.
Conv2d
(
dim
,
hidden_features
*
2
,
kernel_size
=
1
,
bias
=
bias
)
self
.
dwconv
=
nn
.
Conv2d
(
hidden_features
*
2
,
hidden_features
*
2
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
groups
=
hidden_features
*
2
,
bias
=
bias
,
)
self
.
project_out
=
nn
.
Conv2d
(
hidden_features
,
dim
,
kernel_size
=
1
,
bias
=
bias
)
def
forward
(
self
,
x
):
x
=
self
.
project_in
(
x
)
x1
,
x2
=
self
.
dwconv
(
x
).
chunk
(
2
,
dim
=
1
)
x
=
F
.
gelu
(
x1
)
*
x2
x
=
self
.
project_out
(
x
)
return
x
# MBConv
class
SqueezeExcitation
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
shrinkage_rate
=
0.25
):
super
().
__init__
()
hidden_dim
=
int
(
dim
*
shrinkage_rate
)
self
.
gate
=
nn
.
Sequential
(
Reduce
(
"b c h w -> b c"
,
"mean"
),
nn
.
Linear
(
dim
,
hidden_dim
,
bias
=
False
),
nn
.
SiLU
(),
nn
.
Linear
(
hidden_dim
,
dim
,
bias
=
False
),
nn
.
Sigmoid
(),
Rearrange
(
"b c -> b c 1 1"
),
)
def
forward
(
self
,
x
):
return
x
*
self
.
gate
(
x
)
class
MBConvResidual
(
nn
.
Module
):
def
__init__
(
self
,
fn
,
dropout
=
0.0
):
super
().
__init__
()
self
.
fn
=
fn
self
.
dropsample
=
Dropsample
(
dropout
)
def
forward
(
self
,
x
):
out
=
self
.
fn
(
x
)
out
=
self
.
dropsample
(
out
)
return
out
+
x
class
Dropsample
(
nn
.
Module
):
def
__init__
(
self
,
prob
=
0
):
super
().
__init__
()
self
.
prob
=
prob
def
forward
(
self
,
x
):
device
=
x
.
device
if
self
.
prob
==
0.0
or
(
not
self
.
training
):
return
x
keep_mask
=
(
torch
.
FloatTensor
((
x
.
shape
[
0
],
1
,
1
,
1
),
device
=
device
).
uniform_
()
>
self
.
prob
)
return
x
*
keep_mask
/
(
1
-
self
.
prob
)
def
MBConv
(
dim_in
,
dim_out
,
*
,
downsample
,
expansion_rate
=
4
,
shrinkage_rate
=
0.25
,
dropout
=
0.0
):
hidden_dim
=
int
(
expansion_rate
*
dim_out
)
stride
=
2
if
downsample
else
1
net
=
nn
.
Sequential
(
nn
.
Conv2d
(
dim_in
,
hidden_dim
,
1
),
# nn.BatchNorm2d(hidden_dim),
nn
.
GELU
(),
nn
.
Conv2d
(
hidden_dim
,
hidden_dim
,
3
,
stride
=
stride
,
padding
=
1
,
groups
=
hidden_dim
),
# nn.BatchNorm2d(hidden_dim),
nn
.
GELU
(),
SqueezeExcitation
(
hidden_dim
,
shrinkage_rate
=
shrinkage_rate
),
nn
.
Conv2d
(
hidden_dim
,
dim_out
,
1
),
# nn.BatchNorm2d(dim_out)
)
if
dim_in
==
dim_out
and
not
downsample
:
net
=
MBConvResidual
(
net
,
dropout
=
dropout
)
return
net
# attention related classes
class
Attention
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
dim_head
=
32
,
dropout
=
0.0
,
window_size
=
7
,
with_pe
=
True
,
):
super
().
__init__
()
assert
(
dim
%
dim_head
)
==
0
,
"dimension should be divisible by dimension per head"
self
.
heads
=
dim
//
dim_head
self
.
scale
=
dim_head
**-
0.5
self
.
with_pe
=
with_pe
self
.
to_qkv
=
nn
.
Linear
(
dim
,
dim
*
3
,
bias
=
False
)
self
.
attend
=
nn
.
Sequential
(
nn
.
Softmax
(
dim
=-
1
),
nn
.
Dropout
(
dropout
))
self
.
to_out
=
nn
.
Sequential
(
nn
.
Linear
(
dim
,
dim
,
bias
=
False
),
nn
.
Dropout
(
dropout
)
)
# relative positional bias
if
self
.
with_pe
:
self
.
rel_pos_bias
=
nn
.
Embedding
((
2
*
window_size
-
1
)
**
2
,
self
.
heads
)
pos
=
torch
.
arange
(
window_size
)
grid
=
torch
.
stack
(
torch
.
meshgrid
(
pos
,
pos
))
grid
=
rearrange
(
grid
,
"c i j -> (i j) c"
)
rel_pos
=
rearrange
(
grid
,
"i ... -> i 1 ..."
)
-
rearrange
(
grid
,
"j ... -> 1 j ..."
)
rel_pos
+=
window_size
-
1
rel_pos_indices
=
(
rel_pos
*
torch
.
tensor
([
2
*
window_size
-
1
,
1
])).
sum
(
dim
=-
1
)
self
.
register_buffer
(
"rel_pos_indices"
,
rel_pos_indices
,
persistent
=
False
)
def
forward
(
self
,
x
):
batch
,
height
,
width
,
window_height
,
window_width
,
_
,
device
,
h
=
(
*
x
.
shape
,
x
.
device
,
self
.
heads
,
)
# flatten
x
=
rearrange
(
x
,
"b x y w1 w2 d -> (b x y) (w1 w2) d"
)
# project for queries, keys, values
q
,
k
,
v
=
self
.
to_qkv
(
x
).
chunk
(
3
,
dim
=-
1
)
# split heads
q
,
k
,
v
=
map
(
lambda
t
:
rearrange
(
t
,
"b n (h d ) -> b h n d"
,
h
=
h
),
(
q
,
k
,
v
))
# scale
q
=
q
*
self
.
scale
# sim
sim
=
einsum
(
"b h i d, b h j d -> b h i j"
,
q
,
k
)
# add positional bias
if
self
.
with_pe
:
bias
=
self
.
rel_pos_bias
(
self
.
rel_pos_indices
)
sim
=
sim
+
rearrange
(
bias
,
"i j h -> h i j"
)
# attention
attn
=
self
.
attend
(
sim
)
# aggregate
out
=
einsum
(
"b h i j, b h j d -> b h i d"
,
attn
,
v
)
# merge heads
out
=
rearrange
(
out
,
"b h (w1 w2) d -> b w1 w2 (h d)"
,
w1
=
window_height
,
w2
=
window_width
)
# combine heads out
out
=
self
.
to_out
(
out
)
return
rearrange
(
out
,
"(b x y) ... -> b x y ..."
,
x
=
height
,
y
=
width
)
class
Block_Attention
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
dim_head
=
32
,
bias
=
False
,
dropout
=
0.0
,
window_size
=
7
,
with_pe
=
True
,
):
super
().
__init__
()
assert
(
dim
%
dim_head
)
==
0
,
"dimension should be divisible by dimension per head"
self
.
heads
=
dim
//
dim_head
self
.
ps
=
window_size
self
.
scale
=
dim_head
**-
0.5
self
.
with_pe
=
with_pe
self
.
qkv
=
nn
.
Conv2d
(
dim
,
dim
*
3
,
kernel_size
=
1
,
bias
=
bias
)
self
.
qkv_dwconv
=
nn
.
Conv2d
(
dim
*
3
,
dim
*
3
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
groups
=
dim
*
3
,
bias
=
bias
,
)
self
.
attend
=
nn
.
Sequential
(
nn
.
Softmax
(
dim
=-
1
),
nn
.
Dropout
(
dropout
))
self
.
to_out
=
nn
.
Conv2d
(
dim
,
dim
,
kernel_size
=
1
,
bias
=
bias
)
def
forward
(
self
,
x
):
# project for queries, keys, values
b
,
c
,
h
,
w
=
x
.
shape
qkv
=
self
.
qkv_dwconv
(
self
.
qkv
(
x
))
q
,
k
,
v
=
qkv
.
chunk
(
3
,
dim
=
1
)
# split heads
q
,
k
,
v
=
map
(
lambda
t
:
rearrange
(
t
,
"b (h d) (x w1) (y w2) -> (b x y) h (w1 w2) d"
,
h
=
self
.
heads
,
w1
=
self
.
ps
,
w2
=
self
.
ps
,
),
(
q
,
k
,
v
),
)
# scale
q
=
q
*
self
.
scale
# sim
sim
=
einsum
(
"b h i d, b h j d -> b h i j"
,
q
,
k
)
# attention
attn
=
self
.
attend
(
sim
)
# aggregate
out
=
einsum
(
"b h i j, b h j d -> b h i d"
,
attn
,
v
)
# merge heads
out
=
rearrange
(
out
,
"(b x y) head (w1 w2) d -> b (head d) (x w1) (y w2)"
,
x
=
h
//
self
.
ps
,
y
=
w
//
self
.
ps
,
head
=
self
.
heads
,
w1
=
self
.
ps
,
w2
=
self
.
ps
,
)
out
=
self
.
to_out
(
out
)
return
out
class
Channel_Attention
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
heads
,
bias
=
False
,
dropout
=
0.0
,
window_size
=
7
):
super
(
Channel_Attention
,
self
).
__init__
()
self
.
heads
=
heads
self
.
temperature
=
nn
.
Parameter
(
torch
.
ones
(
heads
,
1
,
1
))
self
.
ps
=
window_size
self
.
qkv
=
nn
.
Conv2d
(
dim
,
dim
*
3
,
kernel_size
=
1
,
bias
=
bias
)
self
.
qkv_dwconv
=
nn
.
Conv2d
(
dim
*
3
,
dim
*
3
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
groups
=
dim
*
3
,
bias
=
bias
,
)
self
.
project_out
=
nn
.
Conv2d
(
dim
,
dim
,
kernel_size
=
1
,
bias
=
bias
)
def
forward
(
self
,
x
):
b
,
c
,
h
,
w
=
x
.
shape
qkv
=
self
.
qkv_dwconv
(
self
.
qkv
(
x
))
qkv
=
qkv
.
chunk
(
3
,
dim
=
1
)
q
,
k
,
v
=
map
(
lambda
t
:
rearrange
(
t
,
"b (head d) (h ph) (w pw) -> b (h w) head d (ph pw)"
,
ph
=
self
.
ps
,
pw
=
self
.
ps
,
head
=
self
.
heads
,
),
qkv
,
)
q
=
F
.
normalize
(
q
,
dim
=-
1
)
k
=
F
.
normalize
(
k
,
dim
=-
1
)
attn
=
(
q
@
k
.
transpose
(
-
2
,
-
1
))
*
self
.
temperature
attn
=
attn
.
softmax
(
dim
=-
1
)
out
=
attn
@
v
out
=
rearrange
(
out
,
"b (h w) head d (ph pw) -> b (head d) (h ph) (w pw)"
,
h
=
h
//
self
.
ps
,
w
=
w
//
self
.
ps
,
ph
=
self
.
ps
,
pw
=
self
.
ps
,
head
=
self
.
heads
,
)
out
=
self
.
project_out
(
out
)
return
out
class
Channel_Attention_grid
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
heads
,
bias
=
False
,
dropout
=
0.0
,
window_size
=
7
):
super
(
Channel_Attention_grid
,
self
).
__init__
()
self
.
heads
=
heads
self
.
temperature
=
nn
.
Parameter
(
torch
.
ones
(
heads
,
1
,
1
))
self
.
ps
=
window_size
self
.
qkv
=
nn
.
Conv2d
(
dim
,
dim
*
3
,
kernel_size
=
1
,
bias
=
bias
)
self
.
qkv_dwconv
=
nn
.
Conv2d
(
dim
*
3
,
dim
*
3
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
groups
=
dim
*
3
,
bias
=
bias
,
)
self
.
project_out
=
nn
.
Conv2d
(
dim
,
dim
,
kernel_size
=
1
,
bias
=
bias
)
def
forward
(
self
,
x
):
b
,
c
,
h
,
w
=
x
.
shape
qkv
=
self
.
qkv_dwconv
(
self
.
qkv
(
x
))
qkv
=
qkv
.
chunk
(
3
,
dim
=
1
)
q
,
k
,
v
=
map
(
lambda
t
:
rearrange
(
t
,
"b (head d) (h ph) (w pw) -> b (ph pw) head d (h w)"
,
ph
=
self
.
ps
,
pw
=
self
.
ps
,
head
=
self
.
heads
,
),
qkv
,
)
q
=
F
.
normalize
(
q
,
dim
=-
1
)
k
=
F
.
normalize
(
k
,
dim
=-
1
)
attn
=
(
q
@
k
.
transpose
(
-
2
,
-
1
))
*
self
.
temperature
attn
=
attn
.
softmax
(
dim
=-
1
)
out
=
attn
@
v
out
=
rearrange
(
out
,
"b (ph pw) head d (h w) -> b (head d) (h ph) (w pw)"
,
h
=
h
//
self
.
ps
,
w
=
w
//
self
.
ps
,
ph
=
self
.
ps
,
pw
=
self
.
ps
,
head
=
self
.
heads
,
)
out
=
self
.
project_out
(
out
)
return
out
class
OSA_Block
(
nn
.
Module
):
def
__init__
(
self
,
channel_num
=
64
,
bias
=
True
,
ffn_bias
=
True
,
window_size
=
8
,
with_pe
=
False
,
dropout
=
0.0
,
):
super
(
OSA_Block
,
self
).
__init__
()
w
=
window_size
self
.
layer
=
nn
.
Sequential
(
MBConv
(
channel_num
,
channel_num
,
downsample
=
False
,
expansion_rate
=
1
,
shrinkage_rate
=
0.25
,
),
Rearrange
(
"b d (x w1) (y w2) -> b x y w1 w2 d"
,
w1
=
w
,
w2
=
w
),
# block-like attention
PreNormResidual
(
channel_num
,
Attention
(
dim
=
channel_num
,
dim_head
=
channel_num
//
4
,
dropout
=
dropout
,
window_size
=
window_size
,
with_pe
=
with_pe
,
),
),
Rearrange
(
"b x y w1 w2 d -> b d (x w1) (y w2)"
),
Conv_PreNormResidual
(
channel_num
,
Gated_Conv_FeedForward
(
dim
=
channel_num
,
dropout
=
dropout
)
),
# channel-like attention
Conv_PreNormResidual
(
channel_num
,
Channel_Attention
(
dim
=
channel_num
,
heads
=
4
,
dropout
=
dropout
,
window_size
=
window_size
),
),
Conv_PreNormResidual
(
channel_num
,
Gated_Conv_FeedForward
(
dim
=
channel_num
,
dropout
=
dropout
)
),
Rearrange
(
"b d (w1 x) (w2 y) -> b x y w1 w2 d"
,
w1
=
w
,
w2
=
w
),
# grid-like attention
PreNormResidual
(
channel_num
,
Attention
(
dim
=
channel_num
,
dim_head
=
channel_num
//
4
,
dropout
=
dropout
,
window_size
=
window_size
,
with_pe
=
with_pe
,
),
),
Rearrange
(
"b x y w1 w2 d -> b d (w1 x) (w2 y)"
),
Conv_PreNormResidual
(
channel_num
,
Gated_Conv_FeedForward
(
dim
=
channel_num
,
dropout
=
dropout
)
),
# channel-like attention
Conv_PreNormResidual
(
channel_num
,
Channel_Attention_grid
(
dim
=
channel_num
,
heads
=
4
,
dropout
=
dropout
,
window_size
=
window_size
),
),
Conv_PreNormResidual
(
channel_num
,
Gated_Conv_FeedForward
(
dim
=
channel_num
,
dropout
=
dropout
)
),
)
def
forward
(
self
,
x
):
out
=
self
.
layer
(
x
)
return
out
comfy_extras/chainner_models/architecture/OmniSR/OSAG.py
0 → 100644
View file @
7310290f
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: OSAG.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Sunday, 23rd April 2023 3:08:49 pm
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import
torch.nn
as
nn
from
.esa
import
ESA
from
.OSA
import
OSA_Block
class
OSAG
(
nn
.
Module
):
def
__init__
(
self
,
channel_num
=
64
,
bias
=
True
,
block_num
=
4
,
ffn_bias
=
False
,
window_size
=
0
,
pe
=
False
,
):
super
(
OSAG
,
self
).
__init__
()
# print("window_size: %d" % (window_size))
# print("with_pe", pe)
# print("ffn_bias: %d" % (ffn_bias))
# block_script_name = kwargs.get("block_script_name", "OSA")
# block_class_name = kwargs.get("block_class_name", "OSA_Block")
# script_name = "." + block_script_name
# package = __import__(script_name, fromlist=True)
block_class
=
OSA_Block
# getattr(package, block_class_name)
group_list
=
[]
for
_
in
range
(
block_num
):
temp_res
=
block_class
(
channel_num
,
bias
,
ffn_bias
=
ffn_bias
,
window_size
=
window_size
,
with_pe
=
pe
,
)
group_list
.
append
(
temp_res
)
group_list
.
append
(
nn
.
Conv2d
(
channel_num
,
channel_num
,
1
,
1
,
0
,
bias
=
bias
))
self
.
residual_layer
=
nn
.
Sequential
(
*
group_list
)
esa_channel
=
max
(
channel_num
//
4
,
16
)
self
.
esa
=
ESA
(
esa_channel
,
channel_num
)
def
forward
(
self
,
x
):
out
=
self
.
residual_layer
(
x
)
out
=
out
+
x
return
self
.
esa
(
out
)
comfy_extras/chainner_models/architecture/OmniSR/OmniSR.py
0 → 100644
View file @
7310290f
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: OmniSR.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Sunday, 23rd April 2023 3:06:36 pm
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import
math
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
from
.OSAG
import
OSAG
from
.pixelshuffle
import
pixelshuffle_block
class
OmniSR
(
nn
.
Module
):
def
__init__
(
self
,
state_dict
,
**
kwargs
,
):
super
(
OmniSR
,
self
).
__init__
()
self
.
state
=
state_dict
bias
=
True
# Fine to assume this for now
block_num
=
1
# Fine to assume this for now
ffn_bias
=
True
pe
=
True
num_feat
=
state_dict
[
"input.weight"
].
shape
[
0
]
or
64
num_in_ch
=
state_dict
[
"input.weight"
].
shape
[
1
]
or
3
num_out_ch
=
num_in_ch
# we can just assume this for now. pixelshuffle smh
pixelshuffle_shape
=
state_dict
[
"up.0.weight"
].
shape
[
0
]
up_scale
=
math
.
sqrt
(
pixelshuffle_shape
/
num_out_ch
)
if
up_scale
-
int
(
up_scale
)
>
0
:
print
(
"out_nc is probably different than in_nc, scale calculation might be wrong"
)
up_scale
=
int
(
up_scale
)
res_num
=
0
for
key
in
state_dict
.
keys
():
if
"residual_layer"
in
key
:
temp_res_num
=
int
(
key
.
split
(
"."
)[
1
])
if
temp_res_num
>
res_num
:
res_num
=
temp_res_num
res_num
=
res_num
+
1
# zero-indexed
residual_layer
=
[]
self
.
res_num
=
res_num
self
.
window_size
=
8
# we can just assume this for now, but there's probably a way to calculate it (just need to get the sqrt of the right layer)
self
.
up_scale
=
up_scale
for
_
in
range
(
res_num
):
temp_res
=
OSAG
(
channel_num
=
num_feat
,
bias
=
bias
,
block_num
=
block_num
,
ffn_bias
=
ffn_bias
,
window_size
=
self
.
window_size
,
pe
=
pe
,
)
residual_layer
.
append
(
temp_res
)
self
.
residual_layer
=
nn
.
Sequential
(
*
residual_layer
)
self
.
input
=
nn
.
Conv2d
(
in_channels
=
num_in_ch
,
out_channels
=
num_feat
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
bias
,
)
self
.
output
=
nn
.
Conv2d
(
in_channels
=
num_feat
,
out_channels
=
num_feat
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
bias
,
)
self
.
up
=
pixelshuffle_block
(
num_feat
,
num_out_ch
,
up_scale
,
bias
=
bias
)
# self.tail = pixelshuffle_block(num_feat,num_out_ch,up_scale,bias=bias)
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, sqrt(2. / n))
# chaiNNer specific stuff
self
.
model_arch
=
"OmniSR"
self
.
sub_type
=
"SR"
self
.
in_nc
=
num_in_ch
self
.
out_nc
=
num_out_ch
self
.
num_feat
=
num_feat
self
.
scale
=
up_scale
self
.
supports_fp16
=
True
# TODO: Test this
self
.
supports_bfp16
=
True
self
.
min_size_restriction
=
16
self
.
load_state_dict
(
state_dict
,
strict
=
False
)
def
check_image_size
(
self
,
x
):
_
,
_
,
h
,
w
=
x
.
size
()
# import pdb; pdb.set_trace()
mod_pad_h
=
(
self
.
window_size
-
h
%
self
.
window_size
)
%
self
.
window_size
mod_pad_w
=
(
self
.
window_size
-
w
%
self
.
window_size
)
%
self
.
window_size
# x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
x
=
F
.
pad
(
x
,
(
0
,
mod_pad_w
,
0
,
mod_pad_h
),
"constant"
,
0
)
return
x
def
forward
(
self
,
x
):
H
,
W
=
x
.
shape
[
2
:]
x
=
self
.
check_image_size
(
x
)
residual
=
self
.
input
(
x
)
out
=
self
.
residual_layer
(
residual
)
# origin
out
=
torch
.
add
(
self
.
output
(
out
),
residual
)
out
=
self
.
up
(
out
)
out
=
out
[:,
:,
:
H
*
self
.
up_scale
,
:
W
*
self
.
up_scale
]
return
out
comfy_extras/chainner_models/architecture/OmniSR/esa.py
0 → 100644
View file @
7310290f
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: esa.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Thursday, 20th April 2023 9:28:06 am
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
from
.layernorm
import
LayerNorm2d
def
moment
(
x
,
dim
=
(
2
,
3
),
k
=
2
):
assert
len
(
x
.
size
())
==
4
mean
=
torch
.
mean
(
x
,
dim
=
dim
).
unsqueeze
(
-
1
).
unsqueeze
(
-
1
)
mk
=
(
1
/
(
x
.
size
(
2
)
*
x
.
size
(
3
)))
*
torch
.
sum
(
torch
.
pow
(
x
-
mean
,
k
),
dim
=
dim
)
return
mk
class
ESA
(
nn
.
Module
):
"""
Modification of Enhanced Spatial Attention (ESA), which is proposed by
`Residual Feature Aggregation Network for Image Super-Resolution`
Note: `conv_max` and `conv3_` are NOT used here, so the corresponding codes
are deleted.
"""
def
__init__
(
self
,
esa_channels
,
n_feats
,
conv
=
nn
.
Conv2d
):
super
(
ESA
,
self
).
__init__
()
f
=
esa_channels
self
.
conv1
=
conv
(
n_feats
,
f
,
kernel_size
=
1
)
self
.
conv_f
=
conv
(
f
,
f
,
kernel_size
=
1
)
self
.
conv2
=
conv
(
f
,
f
,
kernel_size
=
3
,
stride
=
2
,
padding
=
0
)
self
.
conv3
=
conv
(
f
,
f
,
kernel_size
=
3
,
padding
=
1
)
self
.
conv4
=
conv
(
f
,
n_feats
,
kernel_size
=
1
)
self
.
sigmoid
=
nn
.
Sigmoid
()
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
def
forward
(
self
,
x
):
c1_
=
self
.
conv1
(
x
)
c1
=
self
.
conv2
(
c1_
)
v_max
=
F
.
max_pool2d
(
c1
,
kernel_size
=
7
,
stride
=
3
)
c3
=
self
.
conv3
(
v_max
)
c3
=
F
.
interpolate
(
c3
,
(
x
.
size
(
2
),
x
.
size
(
3
)),
mode
=
"bilinear"
,
align_corners
=
False
)
cf
=
self
.
conv_f
(
c1_
)
c4
=
self
.
conv4
(
c3
+
cf
)
m
=
self
.
sigmoid
(
c4
)
return
x
*
m
class
LK_ESA
(
nn
.
Module
):
def
__init__
(
self
,
esa_channels
,
n_feats
,
conv
=
nn
.
Conv2d
,
kernel_expand
=
1
,
bias
=
True
):
super
(
LK_ESA
,
self
).
__init__
()
f
=
esa_channels
self
.
conv1
=
conv
(
n_feats
,
f
,
kernel_size
=
1
)
self
.
conv_f
=
conv
(
f
,
f
,
kernel_size
=
1
)
kernel_size
=
17
kernel_expand
=
kernel_expand
padding
=
kernel_size
//
2
self
.
vec_conv
=
nn
.
Conv2d
(
in_channels
=
f
*
kernel_expand
,
out_channels
=
f
*
kernel_expand
,
kernel_size
=
(
1
,
kernel_size
),
padding
=
(
0
,
padding
),
groups
=
2
,
bias
=
bias
,
)
self
.
vec_conv3x1
=
nn
.
Conv2d
(
in_channels
=
f
*
kernel_expand
,
out_channels
=
f
*
kernel_expand
,
kernel_size
=
(
1
,
3
),
padding
=
(
0
,
1
),
groups
=
2
,
bias
=
bias
,
)
self
.
hor_conv
=
nn
.
Conv2d
(
in_channels
=
f
*
kernel_expand
,
out_channels
=
f
*
kernel_expand
,
kernel_size
=
(
kernel_size
,
1
),
padding
=
(
padding
,
0
),
groups
=
2
,
bias
=
bias
,
)
self
.
hor_conv1x3
=
nn
.
Conv2d
(
in_channels
=
f
*
kernel_expand
,
out_channels
=
f
*
kernel_expand
,
kernel_size
=
(
3
,
1
),
padding
=
(
1
,
0
),
groups
=
2
,
bias
=
bias
,
)
self
.
conv4
=
conv
(
f
,
n_feats
,
kernel_size
=
1
)
self
.
sigmoid
=
nn
.
Sigmoid
()
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
def
forward
(
self
,
x
):
c1_
=
self
.
conv1
(
x
)
res
=
self
.
vec_conv
(
c1_
)
+
self
.
vec_conv3x1
(
c1_
)
res
=
self
.
hor_conv
(
res
)
+
self
.
hor_conv1x3
(
res
)
cf
=
self
.
conv_f
(
c1_
)
c4
=
self
.
conv4
(
res
+
cf
)
m
=
self
.
sigmoid
(
c4
)
return
x
*
m
class
LK_ESA_LN
(
nn
.
Module
):
def
__init__
(
self
,
esa_channels
,
n_feats
,
conv
=
nn
.
Conv2d
,
kernel_expand
=
1
,
bias
=
True
):
super
(
LK_ESA_LN
,
self
).
__init__
()
f
=
esa_channels
self
.
conv1
=
conv
(
n_feats
,
f
,
kernel_size
=
1
)
self
.
conv_f
=
conv
(
f
,
f
,
kernel_size
=
1
)
kernel_size
=
17
kernel_expand
=
kernel_expand
padding
=
kernel_size
//
2
self
.
norm
=
LayerNorm2d
(
n_feats
)
self
.
vec_conv
=
nn
.
Conv2d
(
in_channels
=
f
*
kernel_expand
,
out_channels
=
f
*
kernel_expand
,
kernel_size
=
(
1
,
kernel_size
),
padding
=
(
0
,
padding
),
groups
=
2
,
bias
=
bias
,
)
self
.
vec_conv3x1
=
nn
.
Conv2d
(
in_channels
=
f
*
kernel_expand
,
out_channels
=
f
*
kernel_expand
,
kernel_size
=
(
1
,
3
),
padding
=
(
0
,
1
),
groups
=
2
,
bias
=
bias
,
)
self
.
hor_conv
=
nn
.
Conv2d
(
in_channels
=
f
*
kernel_expand
,
out_channels
=
f
*
kernel_expand
,
kernel_size
=
(
kernel_size
,
1
),
padding
=
(
padding
,
0
),
groups
=
2
,
bias
=
bias
,
)
self
.
hor_conv1x3
=
nn
.
Conv2d
(
in_channels
=
f
*
kernel_expand
,
out_channels
=
f
*
kernel_expand
,
kernel_size
=
(
3
,
1
),
padding
=
(
1
,
0
),
groups
=
2
,
bias
=
bias
,
)
self
.
conv4
=
conv
(
f
,
n_feats
,
kernel_size
=
1
)
self
.
sigmoid
=
nn
.
Sigmoid
()
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
def
forward
(
self
,
x
):
c1_
=
self
.
norm
(
x
)
c1_
=
self
.
conv1
(
c1_
)
res
=
self
.
vec_conv
(
c1_
)
+
self
.
vec_conv3x1
(
c1_
)
res
=
self
.
hor_conv
(
res
)
+
self
.
hor_conv1x3
(
res
)
cf
=
self
.
conv_f
(
c1_
)
c4
=
self
.
conv4
(
res
+
cf
)
m
=
self
.
sigmoid
(
c4
)
return
x
*
m
class
AdaGuidedFilter
(
nn
.
Module
):
def
__init__
(
self
,
esa_channels
,
n_feats
,
conv
=
nn
.
Conv2d
,
kernel_expand
=
1
,
bias
=
True
):
super
(
AdaGuidedFilter
,
self
).
__init__
()
self
.
gap
=
nn
.
AdaptiveAvgPool2d
(
1
)
self
.
fc
=
nn
.
Conv2d
(
in_channels
=
n_feats
,
out_channels
=
1
,
kernel_size
=
1
,
padding
=
0
,
stride
=
1
,
groups
=
1
,
bias
=
True
,
)
self
.
r
=
5
def
box_filter
(
self
,
x
,
r
):
channel
=
x
.
shape
[
1
]
kernel_size
=
2
*
r
+
1
weight
=
1.0
/
(
kernel_size
**
2
)
box_kernel
=
weight
*
torch
.
ones
(
(
channel
,
1
,
kernel_size
,
kernel_size
),
dtype
=
torch
.
float32
,
device
=
x
.
device
)
output
=
F
.
conv2d
(
x
,
weight
=
box_kernel
,
stride
=
1
,
padding
=
r
,
groups
=
channel
)
return
output
def
forward
(
self
,
x
):
_
,
_
,
H
,
W
=
x
.
shape
N
=
self
.
box_filter
(
torch
.
ones
((
1
,
1
,
H
,
W
),
dtype
=
x
.
dtype
,
device
=
x
.
device
),
self
.
r
)
# epsilon = self.fc(self.gap(x))
# epsilon = torch.pow(epsilon, 2)
epsilon
=
1e-2
mean_x
=
self
.
box_filter
(
x
,
self
.
r
)
/
N
var_x
=
self
.
box_filter
(
x
*
x
,
self
.
r
)
/
N
-
mean_x
*
mean_x
A
=
var_x
/
(
var_x
+
epsilon
)
b
=
(
1
-
A
)
*
mean_x
m
=
A
*
x
+
b
# mean_A = self.box_filter(A, self.r) / N
# mean_b = self.box_filter(b, self.r) / N
# m = mean_A * x + mean_b
return
x
*
m
class
AdaConvGuidedFilter
(
nn
.
Module
):
def
__init__
(
self
,
esa_channels
,
n_feats
,
conv
=
nn
.
Conv2d
,
kernel_expand
=
1
,
bias
=
True
):
super
(
AdaConvGuidedFilter
,
self
).
__init__
()
f
=
esa_channels
self
.
conv_f
=
conv
(
f
,
f
,
kernel_size
=
1
)
kernel_size
=
17
kernel_expand
=
kernel_expand
padding
=
kernel_size
//
2
self
.
vec_conv
=
nn
.
Conv2d
(
in_channels
=
f
,
out_channels
=
f
,
kernel_size
=
(
1
,
kernel_size
),
padding
=
(
0
,
padding
),
groups
=
f
,
bias
=
bias
,
)
self
.
hor_conv
=
nn
.
Conv2d
(
in_channels
=
f
,
out_channels
=
f
,
kernel_size
=
(
kernel_size
,
1
),
padding
=
(
padding
,
0
),
groups
=
f
,
bias
=
bias
,
)
self
.
gap
=
nn
.
AdaptiveAvgPool2d
(
1
)
self
.
fc
=
nn
.
Conv2d
(
in_channels
=
f
,
out_channels
=
f
,
kernel_size
=
1
,
padding
=
0
,
stride
=
1
,
groups
=
1
,
bias
=
True
,
)
def
forward
(
self
,
x
):
y
=
self
.
vec_conv
(
x
)
y
=
self
.
hor_conv
(
y
)
sigma
=
torch
.
pow
(
y
,
2
)
epsilon
=
self
.
fc
(
self
.
gap
(
y
))
weight
=
sigma
/
(
sigma
+
epsilon
)
m
=
weight
*
x
+
(
1
-
weight
)
return
x
*
m
comfy_extras/chainner_models/architecture/OmniSR/layernorm.py
0 → 100644
View file @
7310290f
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: layernorm.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Thursday, 20th April 2023 9:28:20 am
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import
torch
import
torch.nn
as
nn
class
LayerNormFunction
(
torch
.
autograd
.
Function
):
@
staticmethod
def
forward
(
ctx
,
x
,
weight
,
bias
,
eps
):
ctx
.
eps
=
eps
N
,
C
,
H
,
W
=
x
.
size
()
mu
=
x
.
mean
(
1
,
keepdim
=
True
)
var
=
(
x
-
mu
).
pow
(
2
).
mean
(
1
,
keepdim
=
True
)
y
=
(
x
-
mu
)
/
(
var
+
eps
).
sqrt
()
ctx
.
save_for_backward
(
y
,
var
,
weight
)
y
=
weight
.
view
(
1
,
C
,
1
,
1
)
*
y
+
bias
.
view
(
1
,
C
,
1
,
1
)
return
y
@
staticmethod
def
backward
(
ctx
,
grad_output
):
eps
=
ctx
.
eps
N
,
C
,
H
,
W
=
grad_output
.
size
()
y
,
var
,
weight
=
ctx
.
saved_variables
g
=
grad_output
*
weight
.
view
(
1
,
C
,
1
,
1
)
mean_g
=
g
.
mean
(
dim
=
1
,
keepdim
=
True
)
mean_gy
=
(
g
*
y
).
mean
(
dim
=
1
,
keepdim
=
True
)
gx
=
1.0
/
torch
.
sqrt
(
var
+
eps
)
*
(
g
-
y
*
mean_gy
-
mean_g
)
return
(
gx
,
(
grad_output
*
y
).
sum
(
dim
=
3
).
sum
(
dim
=
2
).
sum
(
dim
=
0
),
grad_output
.
sum
(
dim
=
3
).
sum
(
dim
=
2
).
sum
(
dim
=
0
),
None
,
)
class
LayerNorm2d
(
nn
.
Module
):
def
__init__
(
self
,
channels
,
eps
=
1e-6
):
super
(
LayerNorm2d
,
self
).
__init__
()
self
.
register_parameter
(
"weight"
,
nn
.
Parameter
(
torch
.
ones
(
channels
)))
self
.
register_parameter
(
"bias"
,
nn
.
Parameter
(
torch
.
zeros
(
channels
)))
self
.
eps
=
eps
def
forward
(
self
,
x
):
return
LayerNormFunction
.
apply
(
x
,
self
.
weight
,
self
.
bias
,
self
.
eps
)
class
GRN
(
nn
.
Module
):
"""GRN (Global Response Normalization) layer"""
def
__init__
(
self
,
dim
):
super
().
__init__
()
self
.
gamma
=
nn
.
Parameter
(
torch
.
zeros
(
1
,
dim
,
1
,
1
))
self
.
beta
=
nn
.
Parameter
(
torch
.
zeros
(
1
,
dim
,
1
,
1
))
def
forward
(
self
,
x
):
Gx
=
torch
.
norm
(
x
,
p
=
2
,
dim
=
(
2
,
3
),
keepdim
=
True
)
Nx
=
Gx
/
(
Gx
.
mean
(
dim
=
1
,
keepdim
=
True
)
+
1e-6
)
return
self
.
gamma
*
(
x
*
Nx
)
+
self
.
beta
+
x
comfy_extras/chainner_models/architecture/OmniSR/pixelshuffle.py
0 → 100644
View file @
7310290f
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: pixelshuffle.py
# Created Date: Friday July 1st 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Friday, 1st July 2022 10:18:39 am
# Modified By: Chen Xuanhong
# Copyright (c) 2022 Shanghai Jiao Tong University
#############################################################
import
torch.nn
as
nn
def
pixelshuffle_block
(
in_channels
,
out_channels
,
upscale_factor
=
2
,
kernel_size
=
3
,
bias
=
False
):
"""
Upsample features according to `upscale_factor`.
"""
padding
=
kernel_size
//
2
conv
=
nn
.
Conv2d
(
in_channels
,
out_channels
*
(
upscale_factor
**
2
),
kernel_size
,
padding
=
1
,
bias
=
bias
,
)
pixel_shuffle
=
nn
.
PixelShuffle
(
upscale_factor
)
return
nn
.
Sequential
(
*
[
conv
,
pixel_shuffle
])
comfy_extras/chainner_models/architecture/RRDB.py
View file @
7310290f
...
@@ -79,6 +79,12 @@ class RRDBNet(nn.Module):
...
@@ -79,6 +79,12 @@ class RRDBNet(nn.Module):
self
.
scale
:
int
=
self
.
get_scale
()
self
.
scale
:
int
=
self
.
get_scale
()
self
.
num_filters
:
int
=
self
.
state
[
self
.
key_arr
[
0
]].
shape
[
0
]
self
.
num_filters
:
int
=
self
.
state
[
self
.
key_arr
[
0
]].
shape
[
0
]
c2x2
=
False
if
self
.
state
[
"model.0.weight"
].
shape
[
-
2
]
==
2
:
c2x2
=
True
self
.
scale
=
round
(
math
.
sqrt
(
self
.
scale
/
4
))
self
.
model_arch
=
"ESRGAN-2c2"
self
.
supports_fp16
=
True
self
.
supports_fp16
=
True
self
.
supports_bfp16
=
True
self
.
supports_bfp16
=
True
self
.
min_size_restriction
=
None
self
.
min_size_restriction
=
None
...
@@ -105,11 +111,15 @@ class RRDBNet(nn.Module):
...
@@ -105,11 +111,15 @@ class RRDBNet(nn.Module):
out_nc
=
self
.
num_filters
,
out_nc
=
self
.
num_filters
,
upscale_factor
=
3
,
upscale_factor
=
3
,
act_type
=
self
.
act
,
act_type
=
self
.
act
,
c2x2
=
c2x2
,
)
)
else
:
else
:
upsample_blocks
=
[
upsample_blocks
=
[
upsample_block
(
upsample_block
(
in_nc
=
self
.
num_filters
,
out_nc
=
self
.
num_filters
,
act_type
=
self
.
act
in_nc
=
self
.
num_filters
,
out_nc
=
self
.
num_filters
,
act_type
=
self
.
act
,
c2x2
=
c2x2
,
)
)
for
_
in
range
(
int
(
math
.
log
(
self
.
scale
,
2
)))
for
_
in
range
(
int
(
math
.
log
(
self
.
scale
,
2
)))
]
]
...
@@ -122,6 +132,7 @@ class RRDBNet(nn.Module):
...
@@ -122,6 +132,7 @@ class RRDBNet(nn.Module):
kernel_size
=
3
,
kernel_size
=
3
,
norm_type
=
None
,
norm_type
=
None
,
act_type
=
None
,
act_type
=
None
,
c2x2
=
c2x2
,
),
),
B
.
ShortcutBlock
(
B
.
ShortcutBlock
(
B
.
sequential
(
B
.
sequential
(
...
@@ -138,6 +149,7 @@ class RRDBNet(nn.Module):
...
@@ -138,6 +149,7 @@ class RRDBNet(nn.Module):
act_type
=
self
.
act
,
act_type
=
self
.
act
,
mode
=
"CNA"
,
mode
=
"CNA"
,
plus
=
self
.
plus
,
plus
=
self
.
plus
,
c2x2
=
c2x2
,
)
)
for
_
in
range
(
self
.
num_blocks
)
for
_
in
range
(
self
.
num_blocks
)
],
],
...
@@ -149,6 +161,7 @@ class RRDBNet(nn.Module):
...
@@ -149,6 +161,7 @@ class RRDBNet(nn.Module):
norm_type
=
self
.
norm
,
norm_type
=
self
.
norm
,
act_type
=
None
,
act_type
=
None
,
mode
=
self
.
mode
,
mode
=
self
.
mode
,
c2x2
=
c2x2
,
),
),
)
)
),
),
...
@@ -160,6 +173,7 @@ class RRDBNet(nn.Module):
...
@@ -160,6 +173,7 @@ class RRDBNet(nn.Module):
kernel_size
=
3
,
kernel_size
=
3
,
norm_type
=
None
,
norm_type
=
None
,
act_type
=
self
.
act
,
act_type
=
self
.
act
,
c2x2
=
c2x2
,
),
),
# hr_conv1
# hr_conv1
B
.
conv_block
(
B
.
conv_block
(
...
@@ -168,6 +182,7 @@ class RRDBNet(nn.Module):
...
@@ -168,6 +182,7 @@ class RRDBNet(nn.Module):
kernel_size
=
3
,
kernel_size
=
3
,
norm_type
=
None
,
norm_type
=
None
,
act_type
=
None
,
act_type
=
None
,
c2x2
=
c2x2
,
),
),
)
)
...
...
comfy_extras/chainner_models/architecture/block.py
View file @
7310290f
...
@@ -141,6 +141,19 @@ def sequential(*args):
...
@@ -141,6 +141,19 @@ def sequential(*args):
ConvMode
=
Literal
[
"CNA"
,
"NAC"
,
"CNAC"
]
ConvMode
=
Literal
[
"CNA"
,
"NAC"
,
"CNAC"
]
# 2x2x2 Conv Block
def
conv_block_2c2
(
in_nc
,
out_nc
,
act_type
=
"relu"
,
):
return
sequential
(
nn
.
Conv2d
(
in_nc
,
out_nc
,
kernel_size
=
2
,
padding
=
1
),
nn
.
Conv2d
(
out_nc
,
out_nc
,
kernel_size
=
2
,
padding
=
0
),
act
(
act_type
)
if
act_type
else
None
,
)
def
conv_block
(
def
conv_block
(
in_nc
:
int
,
in_nc
:
int
,
out_nc
:
int
,
out_nc
:
int
,
...
@@ -153,12 +166,17 @@ def conv_block(
...
@@ -153,12 +166,17 @@ def conv_block(
norm_type
:
str
|
None
=
None
,
norm_type
:
str
|
None
=
None
,
act_type
:
str
|
None
=
"relu"
,
act_type
:
str
|
None
=
"relu"
,
mode
:
ConvMode
=
"CNA"
,
mode
:
ConvMode
=
"CNA"
,
c2x2
=
False
,
):
):
"""
"""
Conv layer with padding, normalization, activation
Conv layer with padding, normalization, activation
mode: CNA --> Conv -> Norm -> Act
mode: CNA --> Conv -> Norm -> Act
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
"""
"""
if
c2x2
:
return
conv_block_2c2
(
in_nc
,
out_nc
,
act_type
=
act_type
)
assert
mode
in
(
"CNA"
,
"NAC"
,
"CNAC"
),
"Wrong conv mode [{:s}]"
.
format
(
mode
)
assert
mode
in
(
"CNA"
,
"NAC"
,
"CNAC"
),
"Wrong conv mode [{:s}]"
.
format
(
mode
)
padding
=
get_valid_padding
(
kernel_size
,
dilation
)
padding
=
get_valid_padding
(
kernel_size
,
dilation
)
p
=
pad
(
pad_type
,
padding
)
if
pad_type
and
pad_type
!=
"zero"
else
None
p
=
pad
(
pad_type
,
padding
)
if
pad_type
and
pad_type
!=
"zero"
else
None
...
@@ -285,6 +303,7 @@ class RRDB(nn.Module):
...
@@ -285,6 +303,7 @@ class RRDB(nn.Module):
_convtype
=
"Conv2D"
,
_convtype
=
"Conv2D"
,
_spectral_norm
=
False
,
_spectral_norm
=
False
,
plus
=
False
,
plus
=
False
,
c2x2
=
False
,
):
):
super
(
RRDB
,
self
).
__init__
()
super
(
RRDB
,
self
).
__init__
()
self
.
RDB1
=
ResidualDenseBlock_5C
(
self
.
RDB1
=
ResidualDenseBlock_5C
(
...
@@ -298,6 +317,7 @@ class RRDB(nn.Module):
...
@@ -298,6 +317,7 @@ class RRDB(nn.Module):
act_type
,
act_type
,
mode
,
mode
,
plus
=
plus
,
plus
=
plus
,
c2x2
=
c2x2
,
)
)
self
.
RDB2
=
ResidualDenseBlock_5C
(
self
.
RDB2
=
ResidualDenseBlock_5C
(
nf
,
nf
,
...
@@ -310,6 +330,7 @@ class RRDB(nn.Module):
...
@@ -310,6 +330,7 @@ class RRDB(nn.Module):
act_type
,
act_type
,
mode
,
mode
,
plus
=
plus
,
plus
=
plus
,
c2x2
=
c2x2
,
)
)
self
.
RDB3
=
ResidualDenseBlock_5C
(
self
.
RDB3
=
ResidualDenseBlock_5C
(
nf
,
nf
,
...
@@ -322,6 +343,7 @@ class RRDB(nn.Module):
...
@@ -322,6 +343,7 @@ class RRDB(nn.Module):
act_type
,
act_type
,
mode
,
mode
,
plus
=
plus
,
plus
=
plus
,
c2x2
=
c2x2
,
)
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
...
@@ -365,6 +387,7 @@ class ResidualDenseBlock_5C(nn.Module):
...
@@ -365,6 +387,7 @@ class ResidualDenseBlock_5C(nn.Module):
act_type
=
"leakyrelu"
,
act_type
=
"leakyrelu"
,
mode
:
ConvMode
=
"CNA"
,
mode
:
ConvMode
=
"CNA"
,
plus
=
False
,
plus
=
False
,
c2x2
=
False
,
):
):
super
(
ResidualDenseBlock_5C
,
self
).
__init__
()
super
(
ResidualDenseBlock_5C
,
self
).
__init__
()
...
@@ -382,6 +405,7 @@ class ResidualDenseBlock_5C(nn.Module):
...
@@ -382,6 +405,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type
=
norm_type
,
norm_type
=
norm_type
,
act_type
=
act_type
,
act_type
=
act_type
,
mode
=
mode
,
mode
=
mode
,
c2x2
=
c2x2
,
)
)
self
.
conv2
=
conv_block
(
self
.
conv2
=
conv_block
(
nf
+
gc
,
nf
+
gc
,
...
@@ -393,6 +417,7 @@ class ResidualDenseBlock_5C(nn.Module):
...
@@ -393,6 +417,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type
=
norm_type
,
norm_type
=
norm_type
,
act_type
=
act_type
,
act_type
=
act_type
,
mode
=
mode
,
mode
=
mode
,
c2x2
=
c2x2
,
)
)
self
.
conv3
=
conv_block
(
self
.
conv3
=
conv_block
(
nf
+
2
*
gc
,
nf
+
2
*
gc
,
...
@@ -404,6 +429,7 @@ class ResidualDenseBlock_5C(nn.Module):
...
@@ -404,6 +429,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type
=
norm_type
,
norm_type
=
norm_type
,
act_type
=
act_type
,
act_type
=
act_type
,
mode
=
mode
,
mode
=
mode
,
c2x2
=
c2x2
,
)
)
self
.
conv4
=
conv_block
(
self
.
conv4
=
conv_block
(
nf
+
3
*
gc
,
nf
+
3
*
gc
,
...
@@ -415,6 +441,7 @@ class ResidualDenseBlock_5C(nn.Module):
...
@@ -415,6 +441,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type
=
norm_type
,
norm_type
=
norm_type
,
act_type
=
act_type
,
act_type
=
act_type
,
mode
=
mode
,
mode
=
mode
,
c2x2
=
c2x2
,
)
)
if
mode
==
"CNA"
:
if
mode
==
"CNA"
:
last_act
=
None
last_act
=
None
...
@@ -430,6 +457,7 @@ class ResidualDenseBlock_5C(nn.Module):
...
@@ -430,6 +457,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type
=
norm_type
,
norm_type
=
norm_type
,
act_type
=
last_act
,
act_type
=
last_act
,
mode
=
mode
,
mode
=
mode
,
c2x2
=
c2x2
,
)
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
...
@@ -499,6 +527,7 @@ def upconv_block(
...
@@ -499,6 +527,7 @@ def upconv_block(
norm_type
:
str
|
None
=
None
,
norm_type
:
str
|
None
=
None
,
act_type
=
"relu"
,
act_type
=
"relu"
,
mode
=
"nearest"
,
mode
=
"nearest"
,
c2x2
=
False
,
):
):
# Up conv
# Up conv
# described in https://distill.pub/2016/deconv-checkerboard/
# described in https://distill.pub/2016/deconv-checkerboard/
...
@@ -512,5 +541,6 @@ def upconv_block(
...
@@ -512,5 +541,6 @@ def upconv_block(
pad_type
=
pad_type
,
pad_type
=
pad_type
,
norm_type
=
norm_type
,
norm_type
=
norm_type
,
act_type
=
act_type
,
act_type
=
act_type
,
c2x2
=
c2x2
,
)
)
return
sequential
(
upsample
,
conv
)
return
sequential
(
upsample
,
conv
)
comfy_extras/chainner_models/model_loading.py
View file @
7310290f
...
@@ -6,6 +6,7 @@ from .architecture.face.restoreformer_arch import RestoreFormer
...
@@ -6,6 +6,7 @@ from .architecture.face.restoreformer_arch import RestoreFormer
from
.architecture.HAT
import
HAT
from
.architecture.HAT
import
HAT
from
.architecture.LaMa
import
LaMa
from
.architecture.LaMa
import
LaMa
from
.architecture.MAT
import
MAT
from
.architecture.MAT
import
MAT
from
.architecture.OmniSR.OmniSR
import
OmniSR
from
.architecture.RRDB
import
RRDBNet
as
ESRGAN
from
.architecture.RRDB
import
RRDBNet
as
ESRGAN
from
.architecture.SPSR
import
SPSRNet
as
SPSR
from
.architecture.SPSR
import
SPSRNet
as
SPSR
from
.architecture.SRVGG
import
SRVGGNetCompact
as
RealESRGANv2
from
.architecture.SRVGG
import
SRVGGNetCompact
as
RealESRGANv2
...
@@ -32,6 +33,7 @@ def load_state_dict(state_dict) -> PyTorchModel:
...
@@ -32,6 +33,7 @@ def load_state_dict(state_dict) -> PyTorchModel:
state_dict
=
state_dict
[
"params"
]
state_dict
=
state_dict
[
"params"
]
state_dict_keys
=
list
(
state_dict
.
keys
())
state_dict_keys
=
list
(
state_dict
.
keys
())
# SRVGGNet Real-ESRGAN (v2)
# SRVGGNet Real-ESRGAN (v2)
if
"body.0.weight"
in
state_dict_keys
and
"body.1.weight"
in
state_dict_keys
:
if
"body.0.weight"
in
state_dict_keys
and
"body.1.weight"
in
state_dict_keys
:
model
=
RealESRGANv2
(
state_dict
)
model
=
RealESRGANv2
(
state_dict
)
...
@@ -79,6 +81,9 @@ def load_state_dict(state_dict) -> PyTorchModel:
...
@@ -79,6 +81,9 @@ def load_state_dict(state_dict) -> PyTorchModel:
# MAT
# MAT
elif
"synthesis.first_stage.conv_first.conv.resample_filter"
in
state_dict_keys
:
elif
"synthesis.first_stage.conv_first.conv.resample_filter"
in
state_dict_keys
:
model
=
MAT
(
state_dict
)
model
=
MAT
(
state_dict
)
# Omni-SR
elif
"residual_layer.0.residual_layer.0.layer.0.fn.0.weight"
in
state_dict_keys
:
model
=
OmniSR
(
state_dict
)
# Regular ESRGAN, "new-arch" ESRGAN, Real-ESRGAN v1
# Regular ESRGAN, "new-arch" ESRGAN, Real-ESRGAN v1
else
:
else
:
try
:
try
:
...
...
comfy_extras/chainner_models/types.py
View file @
7310290f
...
@@ -6,6 +6,7 @@ from .architecture.face.restoreformer_arch import RestoreFormer
...
@@ -6,6 +6,7 @@ from .architecture.face.restoreformer_arch import RestoreFormer
from
.architecture.HAT
import
HAT
from
.architecture.HAT
import
HAT
from
.architecture.LaMa
import
LaMa
from
.architecture.LaMa
import
LaMa
from
.architecture.MAT
import
MAT
from
.architecture.MAT
import
MAT
from
.architecture.OmniSR.OmniSR
import
OmniSR
from
.architecture.RRDB
import
RRDBNet
as
ESRGAN
from
.architecture.RRDB
import
RRDBNet
as
ESRGAN
from
.architecture.SPSR
import
SPSRNet
as
SPSR
from
.architecture.SPSR
import
SPSRNet
as
SPSR
from
.architecture.SRVGG
import
SRVGGNetCompact
as
RealESRGANv2
from
.architecture.SRVGG
import
SRVGGNetCompact
as
RealESRGANv2
...
@@ -13,7 +14,7 @@ from .architecture.SwiftSRGAN import Generator as SwiftSRGAN
...
@@ -13,7 +14,7 @@ from .architecture.SwiftSRGAN import Generator as SwiftSRGAN
from
.architecture.Swin2SR
import
Swin2SR
from
.architecture.Swin2SR
import
Swin2SR
from
.architecture.SwinIR
import
SwinIR
from
.architecture.SwinIR
import
SwinIR
PyTorchSRModels
=
(
RealESRGANv2
,
SPSR
,
SwiftSRGAN
,
ESRGAN
,
SwinIR
,
Swin2SR
,
HAT
)
PyTorchSRModels
=
(
RealESRGANv2
,
SPSR
,
SwiftSRGAN
,
ESRGAN
,
SwinIR
,
Swin2SR
,
HAT
,
OmniSR
)
PyTorchSRModel
=
Union
[
PyTorchSRModel
=
Union
[
RealESRGANv2
,
RealESRGANv2
,
SPSR
,
SPSR
,
...
@@ -22,6 +23,7 @@ PyTorchSRModel = Union[
...
@@ -22,6 +23,7 @@ PyTorchSRModel = Union[
SwinIR
,
SwinIR
,
Swin2SR
,
Swin2SR
,
HAT
,
HAT
,
OmniSR
,
]
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment