Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
ComfyUI
Commits
6596654d
You need to sign in or sign up before continuing.
Commit
6596654d
authored
Dec 16, 2023
by
comfyanonymous
Browse files
Add a LatentBatch node.
parent
719fa086
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
23 additions
and
2 deletions
+23
-2
comfy_extras/nodes_latent.py
comfy_extras/nodes_latent.py
+23
-2
No files found.
comfy_extras/nodes_latent.py
View file @
6596654d
...
@@ -3,9 +3,7 @@ import torch
...
@@ -3,9 +3,7 @@ import torch
def
reshape_latent_to
(
target_shape
,
latent
):
def
reshape_latent_to
(
target_shape
,
latent
):
if
latent
.
shape
[
1
:]
!=
target_shape
[
1
:]:
if
latent
.
shape
[
1
:]
!=
target_shape
[
1
:]:
latent
.
movedim
(
1
,
-
1
)
latent
=
comfy
.
utils
.
common_upscale
(
latent
,
target_shape
[
3
],
target_shape
[
2
],
"bilinear"
,
"center"
)
latent
=
comfy
.
utils
.
common_upscale
(
latent
,
target_shape
[
3
],
target_shape
[
2
],
"bilinear"
,
"center"
)
latent
.
movedim
(
-
1
,
1
)
return
comfy
.
utils
.
repeat_to_batch_size
(
latent
,
target_shape
[
0
])
return
comfy
.
utils
.
repeat_to_batch_size
(
latent
,
target_shape
[
0
])
...
@@ -102,9 +100,32 @@ class LatentInterpolate:
...
@@ -102,9 +100,32 @@ class LatentInterpolate:
samples_out
[
"samples"
]
=
st
*
(
m1
*
ratio
+
m2
*
(
1.0
-
ratio
))
samples_out
[
"samples"
]
=
st
*
(
m1
*
ratio
+
m2
*
(
1.0
-
ratio
))
return
(
samples_out
,)
return
(
samples_out
,)
class
LatentBatch
:
@
classmethod
def
INPUT_TYPES
(
s
):
return
{
"required"
:
{
"samples1"
:
(
"LATENT"
,),
"samples2"
:
(
"LATENT"
,)}}
RETURN_TYPES
=
(
"LATENT"
,)
FUNCTION
=
"batch"
CATEGORY
=
"latent/batch"
def
batch
(
self
,
samples1
,
samples2
):
samples_out
=
samples1
.
copy
()
s1
=
samples1
[
"samples"
]
s2
=
samples2
[
"samples"
]
if
s1
.
shape
[
1
:]
!=
s2
.
shape
[
1
:]:
s2
=
comfy
.
utils
.
common_upscale
(
s2
,
s1
.
shape
[
3
],
s1
.
shape
[
2
],
"bilinear"
,
"center"
)
s
=
torch
.
cat
((
s1
,
s2
),
dim
=
0
)
samples_out
[
"samples"
]
=
s
samples_out
[
"batch_index"
]
=
samples1
.
get
(
"batch_index"
,
[
x
for
x
in
range
(
0
,
s1
.
shape
[
0
])])
+
samples2
.
get
(
"batch_index"
,
[
x
for
x
in
range
(
0
,
s2
.
shape
[
0
])])
return
(
samples_out
,)
NODE_CLASS_MAPPINGS
=
{
NODE_CLASS_MAPPINGS
=
{
"LatentAdd"
:
LatentAdd
,
"LatentAdd"
:
LatentAdd
,
"LatentSubtract"
:
LatentSubtract
,
"LatentSubtract"
:
LatentSubtract
,
"LatentMultiply"
:
LatentMultiply
,
"LatentMultiply"
:
LatentMultiply
,
"LatentInterpolate"
:
LatentInterpolate
,
"LatentInterpolate"
:
LatentInterpolate
,
"LatentBatch"
:
LatentBatch
,
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment