Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
ComfyUI
Commits
3a150bad
"...kernels/git@developer.sourcefind.cn:change/sglang.git" did not exist on "e8e18dcdcca0e6d4eacccd074bea9da2ad6a3e18"
Commit
3a150bad
authored
Jul 17, 2023
by
comfyanonymous
Browse files
Only calculate randn in some samplers when it's actually being used.
parent
ee8f8ee0
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
3 additions
and
3 deletions
+3
-3
comfy/k_diffusion/sampling.py
comfy/k_diffusion/sampling.py
+3
-3
No files found.
comfy/k_diffusion/sampling.py
View file @
3a150bad
...
@@ -131,9 +131,9 @@ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None,
...
@@ -131,9 +131,9 @@ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None,
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
for
i
in
trange
(
len
(
sigmas
)
-
1
,
disable
=
disable
):
for
i
in
trange
(
len
(
sigmas
)
-
1
,
disable
=
disable
):
gamma
=
min
(
s_churn
/
(
len
(
sigmas
)
-
1
),
2
**
0.5
-
1
)
if
s_tmin
<=
sigmas
[
i
]
<=
s_tmax
else
0.
gamma
=
min
(
s_churn
/
(
len
(
sigmas
)
-
1
),
2
**
0.5
-
1
)
if
s_tmin
<=
sigmas
[
i
]
<=
s_tmax
else
0.
eps
=
torch
.
randn_like
(
x
)
*
s_noise
sigma_hat
=
sigmas
[
i
]
*
(
gamma
+
1
)
sigma_hat
=
sigmas
[
i
]
*
(
gamma
+
1
)
if
gamma
>
0
:
if
gamma
>
0
:
eps
=
torch
.
randn_like
(
x
)
*
s_noise
x
=
x
+
eps
*
(
sigma_hat
**
2
-
sigmas
[
i
]
**
2
)
**
0.5
x
=
x
+
eps
*
(
sigma_hat
**
2
-
sigmas
[
i
]
**
2
)
**
0.5
denoised
=
model
(
x
,
sigma_hat
*
s_in
,
**
extra_args
)
denoised
=
model
(
x
,
sigma_hat
*
s_in
,
**
extra_args
)
d
=
to_d
(
x
,
sigma_hat
,
denoised
)
d
=
to_d
(
x
,
sigma_hat
,
denoised
)
...
@@ -172,9 +172,9 @@ def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None,
...
@@ -172,9 +172,9 @@ def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None,
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
for
i
in
trange
(
len
(
sigmas
)
-
1
,
disable
=
disable
):
for
i
in
trange
(
len
(
sigmas
)
-
1
,
disable
=
disable
):
gamma
=
min
(
s_churn
/
(
len
(
sigmas
)
-
1
),
2
**
0.5
-
1
)
if
s_tmin
<=
sigmas
[
i
]
<=
s_tmax
else
0.
gamma
=
min
(
s_churn
/
(
len
(
sigmas
)
-
1
),
2
**
0.5
-
1
)
if
s_tmin
<=
sigmas
[
i
]
<=
s_tmax
else
0.
eps
=
torch
.
randn_like
(
x
)
*
s_noise
sigma_hat
=
sigmas
[
i
]
*
(
gamma
+
1
)
sigma_hat
=
sigmas
[
i
]
*
(
gamma
+
1
)
if
gamma
>
0
:
if
gamma
>
0
:
eps
=
torch
.
randn_like
(
x
)
*
s_noise
x
=
x
+
eps
*
(
sigma_hat
**
2
-
sigmas
[
i
]
**
2
)
**
0.5
x
=
x
+
eps
*
(
sigma_hat
**
2
-
sigmas
[
i
]
**
2
)
**
0.5
denoised
=
model
(
x
,
sigma_hat
*
s_in
,
**
extra_args
)
denoised
=
model
(
x
,
sigma_hat
*
s_in
,
**
extra_args
)
d
=
to_d
(
x
,
sigma_hat
,
denoised
)
d
=
to_d
(
x
,
sigma_hat
,
denoised
)
...
@@ -201,9 +201,9 @@ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None,
...
@@ -201,9 +201,9 @@ def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None,
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
s_in
=
x
.
new_ones
([
x
.
shape
[
0
]])
for
i
in
trange
(
len
(
sigmas
)
-
1
,
disable
=
disable
):
for
i
in
trange
(
len
(
sigmas
)
-
1
,
disable
=
disable
):
gamma
=
min
(
s_churn
/
(
len
(
sigmas
)
-
1
),
2
**
0.5
-
1
)
if
s_tmin
<=
sigmas
[
i
]
<=
s_tmax
else
0.
gamma
=
min
(
s_churn
/
(
len
(
sigmas
)
-
1
),
2
**
0.5
-
1
)
if
s_tmin
<=
sigmas
[
i
]
<=
s_tmax
else
0.
eps
=
torch
.
randn_like
(
x
)
*
s_noise
sigma_hat
=
sigmas
[
i
]
*
(
gamma
+
1
)
sigma_hat
=
sigmas
[
i
]
*
(
gamma
+
1
)
if
gamma
>
0
:
if
gamma
>
0
:
eps
=
torch
.
randn_like
(
x
)
*
s_noise
x
=
x
+
eps
*
(
sigma_hat
**
2
-
sigmas
[
i
]
**
2
)
**
0.5
x
=
x
+
eps
*
(
sigma_hat
**
2
-
sigmas
[
i
]
**
2
)
**
0.5
denoised
=
model
(
x
,
sigma_hat
*
s_in
,
**
extra_args
)
denoised
=
model
(
x
,
sigma_hat
*
s_in
,
**
extra_args
)
d
=
to_d
(
x
,
sigma_hat
,
denoised
)
d
=
to_d
(
x
,
sigma_hat
,
denoised
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment