clip_vision.py 3.17 KB
Newer Older
1
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor, modeling_utils
2
3
from .utils import load_torch_file, transformers_convert
import os
4
import torch
5
import comfy.ops
6
7
8
9

class ClipVisionModel():
    def __init__(self, json_config):
        config = CLIPVisionConfig.from_json_file(json_config)
10
11
12
        with comfy.ops.use_comfy_ops():
            with modeling_utils.no_init_weights():
                self.model = CLIPVisionModelWithProjection(config)
13
14
15
16
17
18
19
20
21
22
23
        self.processor = CLIPImageProcessor(crop_size=224,
                                            do_center_crop=True,
                                            do_convert_rgb=True,
                                            do_normalize=True,
                                            do_resize=True,
                                            image_mean=[ 0.48145466,0.4578275,0.40821073],
                                            image_std=[0.26862954,0.26130258,0.27577711],
                                            resample=3, #bicubic
                                            size=224)

    def load_sd(self, sd):
24
        return self.model.load_state_dict(sd, strict=False)
25
26

    def encode_image(self, image):
27
28
        img = torch.clip((255. * image[0]), 0, 255).round().int()
        inputs = self.processor(images=[img], return_tensors="pt")
29
30
31
        outputs = self.model(**inputs)
        return outputs

32
def convert_to_transformers(sd, prefix):
33
    sd_k = sd.keys()
34
    if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
35
        keys_to_replace = {
36
37
38
39
40
41
42
            "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
            "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
            "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
            "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
            "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
            "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
            "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
43
44
45
46
47
48
        }

        for x in keys_to_replace:
            if x in sd_k:
                sd[keys_to_replace[x]] = sd.pop(x)

49
50
        if "{}proj".format(prefix) in sd_k:
            sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
51

52
        sd = transformers_convert(sd, prefix, "vision_model.", 32)
53
54
    return sd

55
56
def load_clipvision_from_sd(sd, prefix):
    sd = convert_to_transformers(sd, prefix)
57
58
59
60
61
    if "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
        json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
    else:
        json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
    clip = ClipVisionModel(json_config)
62
63
64
65
66
67
68
    m, u = clip.load_sd(sd)
    u = set(u)
    keys = list(sd.keys())
    for k in keys:
        if k not in u:
            t = sd.pop(k)
            del t
69
70
71
72
73
    return clip

def load(ckpt_path):
    sd = load_torch_file(ckpt_path)
    return load_clipvision_from_sd(sd)