"tests/vscode:/vscode.git/clone" did not exist on "ce26d3d73d07e9779c5ba6fb2ca3bc187a34c6cc"
ddim.py 21 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
9
10
"""SAMPLING ONLY."""

import torch
import numpy as np
from tqdm import tqdm

from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor


class DDIMSampler(object):
11
    def __init__(self, model, schedule="linear", device=torch.device("cuda"), **kwargs):
comfyanonymous's avatar
comfyanonymous committed
12
13
14
15
        super().__init__()
        self.model = model
        self.ddpm_num_timesteps = model.num_timesteps
        self.schedule = schedule
16
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
17
18
19

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
20
            if attr.device != self.device:
comfyanonymous's avatar
comfyanonymous committed
21
                attr = attr.float().to(self.device)
comfyanonymous's avatar
comfyanonymous committed
22
23
24
        setattr(self, name, attr)

    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
comfyanonymous's avatar
comfyanonymous committed
25
        ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
comfyanonymous's avatar
comfyanonymous committed
26
                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
comfyanonymous's avatar
comfyanonymous committed
27
28
29
30
        self.make_schedule_timesteps(ddim_timesteps, ddim_eta=ddim_eta, verbose=verbose)

    def make_schedule_timesteps(self, ddim_timesteps, ddim_eta=0., verbose=True):
        self.ddim_timesteps = torch.tensor(ddim_timesteps)
comfyanonymous's avatar
comfyanonymous committed
31
32
        alphas_cumprod = self.model.alphas_cumprod
        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
comfyanonymous's avatar
comfyanonymous committed
33
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

        self.register_buffer('betas', to_torch(self.model.betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))

        # ddim sampling parameters
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
                                                                                   ddim_timesteps=self.ddim_timesteps,
                                                                                   eta=ddim_eta,verbose=verbose)
        self.register_buffer('ddim_sigmas', ddim_sigmas)
        self.register_buffer('ddim_alphas', ddim_alphas)
        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)

comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    @torch.no_grad()
    def sample_custom(self,
                      ddim_timesteps,
                      conditioning,
                      callback=None,
                      img_callback=None,
                      quantize_x0=False,
                      eta=0.,
                      mask=None,
                      x0=None,
                      temperature=1.,
                      noise_dropout=0.,
                      score_corrector=None,
                      corrector_kwargs=None,
                      verbose=True,
                      x_T=None,
                      log_every_t=100,
                      unconditional_guidance_scale=1.,
                      unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
                      dynamic_threshold=None,
                      ucg_schedule=None,
                      denoise_function=None,
81
                      extra_args=None,
comfyanonymous's avatar
comfyanonymous committed
82
83
                      to_zero=True,
                      end_step=None,
84
                      disable_pbar=False,
comfyanonymous's avatar
comfyanonymous committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
                      **kwargs
                      ):
        self.make_schedule_timesteps(ddim_timesteps=ddim_timesteps, ddim_eta=eta, verbose=verbose)
        samples, intermediates = self.ddim_sampling(conditioning, x_T.shape,
                                                    callback=callback,
                                                    img_callback=img_callback,
                                                    quantize_denoised=quantize_x0,
                                                    mask=mask, x0=x0,
                                                    ddim_use_original_steps=False,
                                                    noise_dropout=noise_dropout,
                                                    temperature=temperature,
                                                    score_corrector=score_corrector,
                                                    corrector_kwargs=corrector_kwargs,
                                                    x_T=x_T,
                                                    log_every_t=log_every_t,
                                                    unconditional_guidance_scale=unconditional_guidance_scale,
                                                    unconditional_conditioning=unconditional_conditioning,
                                                    dynamic_threshold=dynamic_threshold,
                                                    ucg_schedule=ucg_schedule,
                                                    denoise_function=denoise_function,
105
                                                    extra_args=extra_args,
comfyanonymous's avatar
comfyanonymous committed
106
                                                    to_zero=to_zero,
107
108
                                                    end_step=end_step,
                                                    disable_pbar=disable_pbar
comfyanonymous's avatar
comfyanonymous committed
109
110
111
112
                                                    )
        return samples, intermediates


comfyanonymous's avatar
comfyanonymous committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    @torch.no_grad()
    def sample(self,
               S,
               batch_size,
               shape,
               conditioning=None,
               callback=None,
               normals_sequence=None,
               img_callback=None,
               quantize_x0=False,
               eta=0.,
               mask=None,
               x0=None,
               temperature=1.,
               noise_dropout=0.,
               score_corrector=None,
               corrector_kwargs=None,
               verbose=True,
               x_T=None,
               log_every_t=100,
               unconditional_guidance_scale=1.,
               unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
               dynamic_threshold=None,
               ucg_schedule=None,
               **kwargs
               ):
        if conditioning is not None:
            if isinstance(conditioning, dict):
                ctmp = conditioning[list(conditioning.keys())[0]]
                while isinstance(ctmp, list): ctmp = ctmp[0]
                cbs = ctmp.shape[0]
                if cbs != batch_size:
                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")

            elif isinstance(conditioning, list):
                for ctmp in conditioning:
                    if ctmp.shape[0] != batch_size:
                        print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")

            else:
                if conditioning.shape[0] != batch_size:
                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")

        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
        # sampling
        C, H, W = shape
        size = (batch_size, C, H, W)
        print(f'Data shape for DDIM sampling is {size}, eta {eta}')

        samples, intermediates = self.ddim_sampling(conditioning, size,
                                                    callback=callback,
                                                    img_callback=img_callback,
                                                    quantize_denoised=quantize_x0,
                                                    mask=mask, x0=x0,
                                                    ddim_use_original_steps=False,
                                                    noise_dropout=noise_dropout,
                                                    temperature=temperature,
                                                    score_corrector=score_corrector,
                                                    corrector_kwargs=corrector_kwargs,
                                                    x_T=x_T,
                                                    log_every_t=log_every_t,
                                                    unconditional_guidance_scale=unconditional_guidance_scale,
                                                    unconditional_conditioning=unconditional_conditioning,
                                                    dynamic_threshold=dynamic_threshold,
comfyanonymous's avatar
comfyanonymous committed
177
178
                                                    ucg_schedule=ucg_schedule,
                                                    denoise_function=None,
179
                                                    extra_args=None
comfyanonymous's avatar
comfyanonymous committed
180
181
182
183
184
185
186
187
188
189
                                                    )
        return samples, intermediates

    @torch.no_grad()
    def ddim_sampling(self, cond, shape,
                      x_T=None, ddim_use_original_steps=False,
                      callback=None, timesteps=None, quantize_denoised=False,
                      mask=None, x0=None, img_callback=None, log_every_t=100,
                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
                      unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
190
                      ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None, disable_pbar=False):
comfyanonymous's avatar
comfyanonymous committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        device = self.model.betas.device
        b = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=device)
        else:
            img = x_T

        if timesteps is None:
            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
        elif timesteps is not None and not ddim_use_original_steps:
            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
            timesteps = self.ddim_timesteps[:subset_end]

        intermediates = {'x_inter': [img], 'pred_x0': [img]}
comfyanonymous's avatar
comfyanonymous committed
205
        time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else timesteps.flip(0)
comfyanonymous's avatar
comfyanonymous committed
206
        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
comfyanonymous's avatar
comfyanonymous committed
207
        # print(f"Running DDIM Sampling with {total_steps} timesteps")
comfyanonymous's avatar
comfyanonymous committed
208

209
        iterator = tqdm(time_range[:end_step], desc='DDIM Sampler', total=end_step, disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full((b,), step, device=device, dtype=torch.long)

            if mask is not None:
                assert x0 is not None
                img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
                img = img_orig * mask + (1. - mask) * img

            if ucg_schedule is not None:
                assert len(ucg_schedule) == len(time_range)
                unconditional_guidance_scale = ucg_schedule[i]

            outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
                                      quantize_denoised=quantize_denoised, temperature=temperature,
                                      noise_dropout=noise_dropout, score_corrector=score_corrector,
                                      corrector_kwargs=corrector_kwargs,
                                      unconditional_guidance_scale=unconditional_guidance_scale,
                                      unconditional_conditioning=unconditional_conditioning,
230
                                      dynamic_threshold=dynamic_threshold, denoise_function=denoise_function, extra_args=extra_args)
comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
236
237
238
            img, pred_x0 = outs
            if callback: callback(i)
            if img_callback: img_callback(pred_x0, i)

            if index % log_every_t == 0 or index == total_steps - 1:
                intermediates['x_inter'].append(img)
                intermediates['pred_x0'].append(pred_x0)

comfyanonymous's avatar
comfyanonymous committed
239
240
241
242
243
244
245
246
247
        if to_zero:
            img = pred_x0
        else:
            if ddim_use_original_steps:
                sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
            else:
                sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
            img /= sqrt_alphas_cumprod[index - 1]

comfyanonymous's avatar
comfyanonymous committed
248
249
250
251
252
253
        return img, intermediates

    @torch.no_grad()
    def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
                      unconditional_guidance_scale=1., unconditional_conditioning=None,
254
                      dynamic_threshold=None, denoise_function=None, extra_args=None):
comfyanonymous's avatar
comfyanonymous committed
255
256
        b, *_, device = *x.shape, x.device

comfyanonymous's avatar
comfyanonymous committed
257
        if denoise_function is not None:
258
            model_output = denoise_function(self.model.apply_model, x, t, **extra_args)
comfyanonymous's avatar
comfyanonymous committed
259
        elif unconditional_conditioning is None or unconditional_guidance_scale == 1.:
comfyanonymous's avatar
comfyanonymous committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
            model_output = self.model.apply_model(x, t, c)
        else:
            x_in = torch.cat([x] * 2)
            t_in = torch.cat([t] * 2)
            if isinstance(c, dict):
                assert isinstance(unconditional_conditioning, dict)
                c_in = dict()
                for k in c:
                    if isinstance(c[k], list):
                        c_in[k] = [torch.cat([
                            unconditional_conditioning[k][i],
                            c[k][i]]) for i in range(len(c[k]))]
                    else:
                        c_in[k] = torch.cat([
                                unconditional_conditioning[k],
                                c[k]])
            elif isinstance(c, list):
                c_in = list()
                assert isinstance(unconditional_conditioning, list)
                for i in range(len(c)):
                    c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
            else:
                c_in = torch.cat([unconditional_conditioning, c])
            model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
            model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)

        if self.model.parameterization == "v":
            e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
        else:
            e_t = model_output

        if score_corrector is not None:
            assert self.model.parameterization == "eps", 'not implemented'
            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
        # select parameters corresponding to the currently considered timestep
        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)

        # current prediction for x_0
        if self.model.parameterization != "v":
            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
        else:
            pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)

        if quantize_denoised:
            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)

        if dynamic_threshold is not None:
            raise NotImplementedError()

        # direction pointing to x_t
        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
        return x_prev, pred_x0

    @torch.no_grad()
    def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
               unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
        num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]

        assert t_enc <= num_reference_steps
        num_steps = t_enc

        if use_original_steps:
            alphas_next = self.alphas_cumprod[:num_steps]
            alphas = self.alphas_cumprod_prev[:num_steps]
        else:
            alphas_next = self.ddim_alphas[:num_steps]
            alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])

        x_next = x0
        intermediates = []
        inter_steps = []
        for i in tqdm(range(num_steps), desc='Encoding Image'):
            t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
            if unconditional_guidance_scale == 1.:
                noise_pred = self.model.apply_model(x_next, t, c)
            else:
                assert unconditional_conditioning is not None
                e_t_uncond, noise_pred = torch.chunk(
                    self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
                                           torch.cat((unconditional_conditioning, c))), 2)
                noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)

            xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
            weighted_noise_pred = alphas_next[i].sqrt() * (
                    (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
            x_next = xt_weighted + weighted_noise_pred
            if return_intermediates and i % (
                    num_steps // return_intermediates) == 0 and i < num_steps - 1:
                intermediates.append(x_next)
                inter_steps.append(i)
            elif return_intermediates and i >= num_steps - 2:
                intermediates.append(x_next)
                inter_steps.append(i)
            if callback: callback(i)

        out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
        if return_intermediates:
            out.update({'intermediates': intermediates})
        return x_next, out

    @torch.no_grad()
comfyanonymous's avatar
comfyanonymous committed
373
    def stochastic_encode(self, x0, t, use_original_steps=False, noise=None, max_denoise=False):
comfyanonymous's avatar
comfyanonymous committed
374
375
376
377
378
379
380
381
382
383
384
        # fast, but does not allow for exact reconstruction
        # t serves as an index to gather the correct alphas
        if use_original_steps:
            sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
            sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
        else:
            sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
            sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas

        if noise is None:
            noise = torch.randn_like(x0)
comfyanonymous's avatar
comfyanonymous committed
385
386
387
388
389
390
        if max_denoise:
            noise_multiplier = 1.0
        else:
            noise_multiplier = extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape)

        return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + noise_multiplier * noise)
comfyanonymous's avatar
comfyanonymous committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

    @torch.no_grad()
    def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
               use_original_steps=False, callback=None):

        timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
        timesteps = timesteps[:t_start]

        time_range = np.flip(timesteps)
        total_steps = timesteps.shape[0]
        print(f"Running DDIM Sampling with {total_steps} timesteps")

        iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
        x_dec = x_latent
        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
            x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
                                          unconditional_guidance_scale=unconditional_guidance_scale,
                                          unconditional_conditioning=unconditional_conditioning)
            if callback: callback(i)
        return x_dec