openaimodel.py 26.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
from abc import abstractmethod
import math

import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F

comfyanonymous's avatar
comfyanonymous committed
9
from .util import (
comfyanonymous's avatar
comfyanonymous committed
10
11
12
13
14
15
    checkpoint,
    avg_pool_nd,
    zero_module,
    normalization,
    timestep_embedding,
)
comfyanonymous's avatar
comfyanonymous committed
16
17
from ..attention import SpatialTransformer
from comfy.ldm.util import exists
comfyanonymous's avatar
comfyanonymous committed
18
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

38
    def forward(self, x, emb, context=None, transformer_options={}, output_shape=None):
comfyanonymous's avatar
comfyanonymous committed
39
40
41
42
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            elif isinstance(layer, SpatialTransformer):
43
                x = layer(x, context, transformer_options)
44
45
            elif isinstance(layer, Upsample):
                x = layer(x, output_shape=output_shape)
comfyanonymous's avatar
comfyanonymous committed
46
47
48
49
            else:
                x = layer(x)
        return x

50
51
52
53
54
55
56
57
58
59
60
61
62
#This is needed because accelerate makes a copy of transformer_options which breaks "current_index"
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None):
    for layer in ts:
        if isinstance(layer, TimestepBlock):
            x = layer(x, emb)
        elif isinstance(layer, SpatialTransformer):
            x = layer(x, context, transformer_options)
            transformer_options["current_index"] += 1
        elif isinstance(layer, Upsample):
            x = layer(x, output_shape=output_shape)
        else:
            x = layer(x)
    return x
comfyanonymous's avatar
comfyanonymous committed
63
64
65
66
67
68
69
70
71
72

class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

comfyanonymous's avatar
comfyanonymous committed
73
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
74
75
76
77
78
79
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
comfyanonymous's avatar
comfyanonymous committed
80
            self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
81

82
    def forward(self, x, output_shape=None):
comfyanonymous's avatar
comfyanonymous committed
83
84
        assert x.shape[1] == self.channels
        if self.dims == 3:
85
86
87
88
            shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
            if output_shape is not None:
                shape[1] = output_shape[3]
                shape[2] = output_shape[4]
comfyanonymous's avatar
comfyanonymous committed
89
        else:
90
91
92
93
94
95
            shape = [x.shape[2] * 2, x.shape[3] * 2]
            if output_shape is not None:
                shape[0] = output_shape[2]
                shape[1] = output_shape[3]

        x = F.interpolate(x, size=shape, mode="nearest")
comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
100
101
102
103
104
105
106
107
108
        if self.use_conv:
            x = self.conv(x)
        return x

class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

comfyanonymous's avatar
comfyanonymous committed
109
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
116
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
comfyanonymous's avatar
comfyanonymous committed
117
            self.op = operations.conv_nd(
118
                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
            )
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
157
158
        dtype=None,
        device=None,
comfyanonymous's avatar
comfyanonymous committed
159
        operations=comfy.ops
comfyanonymous's avatar
comfyanonymous committed
160
161
162
163
164
165
166
167
168
169
170
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
171
            nn.GroupNorm(32, channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
172
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
173
            operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
174
175
176
177
178
        )

        self.updown = up or down

        if up:
179
180
            self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
181
        elif down:
182
183
            self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
184
185
186
187
188
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
189
            operations.Linear(
comfyanonymous's avatar
comfyanonymous committed
190
                emb_channels,
191
                2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
192
193
194
            ),
        )
        self.out_layers = nn.Sequential(
195
            nn.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
196
197
198
            nn.SiLU(),
            nn.Dropout(p=dropout),
            zero_module(
comfyanonymous's avatar
comfyanonymous committed
199
                operations.conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
200
201
202
203
204
205
            ),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
comfyanonymous's avatar
comfyanonymous committed
206
            self.skip_connection = operations.conv_nd(
207
                dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
208
209
            )
        else:
comfyanonymous's avatar
comfyanonymous committed
210
            self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.
        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        return checkpoint(
            self._forward, (x, emb), self.parameters(), self.use_checkpoint
        )


    def _forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = th.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h

246
247
248
249
250
251
252
253
class Timestep(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, t):
        return timestep_embedding(t, self.dim)

comfyanonymous's avatar
comfyanonymous committed
254
255
256
257
258
259
def apply_control(h, control, name):
    if control is not None and name in control and len(control[name]) > 0:
        ctrl = control[name].pop()
        if ctrl is not None:
            h += ctrl
    return h
260

comfyanonymous's avatar
comfyanonymous committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
class UNetModel(nn.Module):
    """
    The full UNet model with attention and timestep embedding.
    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
300
        dtype=th.float32,
comfyanonymous's avatar
comfyanonymous committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,    # custom transformer support
        transformer_depth=1,              # custom transformer support
        context_dim=None,                 # custom transformer support
        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
316
        adm_in_channels=None,
317
        transformer_depth_middle=None,
318
        transformer_depth_output=None,
319
        device=None,
comfyanonymous's avatar
comfyanonymous committed
320
        operations=comfy.ops,
comfyanonymous's avatar
comfyanonymous committed
321
322
    ):
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
323
        assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
comfyanonymous's avatar
comfyanonymous committed
324
325
326
327
328
        if use_spatial_transformer:
            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
329
330
331
            # from omegaconf.listconfig import ListConfig
            # if type(context_dim) == ListConfig:
            #     context_dim = list(context_dim)
comfyanonymous's avatar
comfyanonymous committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
346

comfyanonymous's avatar
comfyanonymous committed
347
348
349
350
351
352
353
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
354

comfyanonymous's avatar
comfyanonymous committed
355
356
357
358
359
360
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)

361
362
363
        transformer_depth = transformer_depth[:]
        transformer_depth_output = transformer_depth_output[:]

comfyanonymous's avatar
comfyanonymous committed
364
365
366
367
368
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
369
        self.dtype = dtype
comfyanonymous's avatar
comfyanonymous committed
370
371
372
373
374
375
376
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
377
            operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
378
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
379
            operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
380
381
382
383
384
385
386
387
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
388
389
390
391
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
392
                        operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
393
                        nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
394
                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
395
396
                    )
                )
comfyanonymous's avatar
comfyanonymous committed
397
398
399
400
401
402
            else:
                raise ValueError()

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
403
                    operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
                )
            ]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
422
423
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
424
                        operations=operations,
comfyanonymous's avatar
comfyanonymous committed
425
426
427
                    )
                ]
                ch = mult * model_channels
428
429
                num_transformers = transformer_depth.pop(0)
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
comfyanonymous's avatar
comfyanonymous committed
444
                        layers.append(SpatialTransformer(
445
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
446
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
comfyanonymous's avatar
comfyanonymous committed
447
                                use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
466
467
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
468
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
469
470
471
                        )
                        if resblock_updown
                        else Downsample(
comfyanonymous's avatar
comfyanonymous committed
472
                            ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            #num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
489
        mid_block = [
comfyanonymous's avatar
comfyanonymous committed
490
491
492
493
494
495
496
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
497
498
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
499
                operations=operations
500
501
502
            )]
        if transformer_depth_middle >= 0:
            mid_block += [SpatialTransformer(  # always uses a self-attn
503
                            ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
504
                            disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
comfyanonymous's avatar
comfyanonymous committed
505
                            use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
506
507
508
509
510
511
512
513
                        ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
514
515
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
516
                operations=operations
517
518
            )]
        self.middle_block = TimestepEmbedSequential(*mid_block)
comfyanonymous's avatar
comfyanonymous committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(self.num_res_blocks[level] + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,
                        time_embed_dim,
                        dropout,
                        out_channels=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
534
535
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
536
                        operations=operations
comfyanonymous's avatar
comfyanonymous committed
537
538
539
                    )
                ]
                ch = model_channels * mult
540
541
                num_transformers = transformer_depth_output.pop()
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
                        layers.append(
comfyanonymous's avatar
comfyanonymous committed
557
                            SpatialTransformer(
558
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
559
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
comfyanonymous's avatar
comfyanonymous committed
560
                                use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
                            )
                        )
                if level and i == self.num_res_blocks[level]:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
575
576
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
577
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
578
579
                        )
                        if resblock_updown
comfyanonymous's avatar
comfyanonymous committed
580
                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
581
582
583
584
585
586
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
587
            nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
588
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
589
            zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
comfyanonymous's avatar
comfyanonymous committed
590
591
592
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
593
            nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
594
            operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
595
596
597
            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
        )

598
    def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
599
600
601
602
603
604
605
606
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param context: conditioning plugged in via crossattn
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """
607
        transformer_options["original_shape"] = list(x.shape)
608
        transformer_options["current_index"] = 0
609
        transformer_patches = transformer_options.get("patches", {})
610

comfyanonymous's avatar
comfyanonymous committed
611
612
613
614
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
615
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
comfyanonymous's avatar
comfyanonymous committed
616
617
618
619
620
621
622
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

        h = x.type(self.dtype)
comfyanonymous's avatar
comfyanonymous committed
623
        for id, module in enumerate(self.input_blocks):
624
            transformer_options["block"] = ("input", id)
625
            h = forward_timestep_embed(module, h, emb, context, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
626
            h = apply_control(h, control, 'input')
comfyanonymous's avatar
comfyanonymous committed
627
            hs.append(h)
comfyanonymous's avatar
comfyanonymous committed
628

629
        transformer_options["block"] = ("middle", 0)
630
        h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
631
        h = apply_control(h, control, 'middle')
comfyanonymous's avatar
comfyanonymous committed
632

633
634
        for id, module in enumerate(self.output_blocks):
            transformer_options["block"] = ("output", id)
comfyanonymous's avatar
comfyanonymous committed
635
            hsp = hs.pop()
comfyanonymous's avatar
comfyanonymous committed
636
            h = apply_control(h, control, 'output')
637

638
639
640
641
642
            if "output_block_patch" in transformer_patches:
                patch = transformer_patches["output_block_patch"]
                for p in patch:
                    h, hsp = p(h, hsp, transformer_options)

comfyanonymous's avatar
comfyanonymous committed
643
            h = th.cat([h, hsp], dim=1)
comfyanonymous's avatar
comfyanonymous committed
644
            del hsp
645
646
647
648
            if len(hs) > 0:
                output_shape = hs[-1].shape
            else:
                output_shape = None
649
            h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape)
comfyanonymous's avatar
comfyanonymous committed
650
651
652
653
654
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)