supported_models.py 6.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
from . import model_base
from . import utils

from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip

from . import supported_models_base
10
from . import latent_formats
11

12
13
from . import diffusers_convert

14
15
16
17
18
19
20
21
22
23
24
25
26
class SD15(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

27
    latent_format = latent_formats.SD15
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

    def process_clip_state_dict(self, state_dict):
        k = list(state_dict.keys())
        for x in k:
            if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
                y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
                state_dict[y] = state_dict.pop(x)

        if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
            ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
            if ids.dtype == torch.float32:
                state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()

        return state_dict

    def clip_target(self):
        return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)

class SD20(supported_models_base.BASE):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
    }

54
    latent_format = latent_formats.SD15
55
56
57
58
59
60
61
62
63
64
65
66
67

    def v_prediction(self, state_dict):
        if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
            k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
            out = state_dict[k]
            if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
                return True
        return False

    def process_clip_state_dict(self, state_dict):
        state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
        return state_dict

68
69
70
71
72
73
74
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        replace_prefix[""] = "cond_stage_model.model."
        state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix)
        state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
        return state_dict

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def clip_target(self):
        return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)

class SD21UnclipL(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 1536,
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}


class SD21UnclipH(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 2048,
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}

class SDXLRefiner(supported_models_base.BASE):
    unet_config = {
        "model_channels": 384,
        "use_linear_in_transformer": True,
        "context_dim": 1280,
        "adm_in_channels": 2560,
        "transformer_depth": [0, 4, 4, 0],
    }

110
    latent_format = latent_formats.SDXL
111
112

    def get_model(self, state_dict):
113
        return model_base.SDXLRefiner(self)
114
115
116
117
118
119
120
121
122
123
124

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

        state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.0.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
        keys_to_replace["conditioner.embedders.0.model.text_projection"] = "cond_stage_model.clip_g.text_projection"

        state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
        return state_dict

125
126
127
128
129
130
131
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
        replace_prefix["clip_g"] = "conditioner.embedders.0.model"
        state_dict_g = supported_models_base.state_dict_prefix_replace(state_dict_g, replace_prefix)
        return state_dict_g

132
133
134
135
136
137
138
139
140
141
142
143
    def clip_target(self):
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)

class SDXL(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 10],
        "context_dim": 2048,
        "adm_in_channels": 2816
    }

144
    latent_format = latent_formats.SDXL
145
146

    def get_model(self, state_dict):
147
        return model_base.SDXL(self)
148
149
150
151
152
153
154
155
156
157
158
159
160

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

        replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
        state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
        keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"

        state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix)
        state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
        return state_dict

161
162
163
164
165
166
167
168
169
170
171
172
173
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        keys_to_replace = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
        for k in state_dict:
            if k.startswith("clip_l"):
                state_dict_g[k] = state_dict[k]

        replace_prefix["clip_g"] = "conditioner.embedders.1.model"
        replace_prefix["clip_l"] = "conditioner.embedders.0"
        state_dict_g = supported_models_base.state_dict_prefix_replace(state_dict_g, replace_prefix)
        return state_dict_g

174
175
176
177
178
    def clip_target(self):
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)


models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL]