nodes_mask.py 9.2 KB
Newer Older
1
2
3
4
import torch

from nodes import MAX_RESOLUTION

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
def composite(destination, source, x, y, mask = None, multiplier = 8):
    x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
    y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))

    left, top = (x // multiplier, y // multiplier)
    right, bottom = (left + source.shape[3], top + source.shape[2],)


    if mask is None:
        mask = torch.ones_like(source)
    else:
        mask = mask.clone()
        mask = torch.nn.functional.interpolate(mask[None, None], size=(source.shape[2], source.shape[3]), mode="bilinear")
        mask = mask.repeat((source.shape[0], source.shape[1], 1, 1))

    # calculate the bounds of the source that will be overlapping the destination
    # this prevents the source trying to overwrite latent pixels that are out of bounds
    # of the destination
    visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)

    mask = mask[:, :, :visible_height, :visible_width]
    inverse_mask = torch.ones_like(mask) - mask

    source_portion = mask * source[:, :, :visible_height, :visible_width]
    destination_portion = inverse_mask  * destination[:, :, top:bottom, left:right]

    destination[:, :, top:bottom, left:right] = source_portion + destination_portion
    return destination

34
35
36
37
38
39
40
class LatentCompositeMasked:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "destination": ("LATENT",),
                "source": ("LATENT",),
41
42
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
43
44
45
46
47
48
49
50
51
52
53
54
55
56
            },
            "optional": {
                "mask": ("MASK",),
            }
        }
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

    def composite(self, destination, source, x, y, mask = None):
        output = destination.copy()
        destination = destination["samples"].clone()
        source = source["samples"]
57
58
        output["samples"] = composite(destination, source, x, y, mask, 8)
        return (output,)
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
class ImageCompositeMasked:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "destination": ("IMAGE",),
                "source": ("IMAGE",),
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
            },
            "optional": {
                "mask": ("MASK",),
            }
        }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "composite"
76

77
    CATEGORY = "image"
78

79
80
81
    def composite(self, destination, source, x, y, mask = None):
        destination = destination.clone().movedim(-1, 1)
        output = composite(destination, source.movedim(-1, 1), x, y, mask, 1).movedim(1, -1)
82
83
84
85
        return (output,)

class MaskToImage:
    @classmethod
86
    def INPUT_TYPES(s):
87
        return {
88
89
90
                "required": {
                    "mask": ("MASK",),
                }
91
92
93
94
95
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("IMAGE",)
96
97
98
    FUNCTION = "mask_to_image"

    def mask_to_image(self, mask):
99
        result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
100
101
102
103
104
105
106
107
108
109
110
        return (result,)

class ImageToMask:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "image": ("IMAGE",),
                    "channel": (["red", "green", "blue"],),
                }
        }
111

112
    CATEGORY = "mask"
113

114
115
    RETURN_TYPES = ("MASK",)
    FUNCTION = "image_to_mask"
116

117
118
119
120
    def image_to_mask(self, image, channel):
        channels = ["red", "green", "blue"]
        mask = image[0, :, :, channels.index(channel)]
        return (mask,)
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

class SolidMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "solid"

    def solid(self, value, width, height):
        out = torch.full((height, width), value, dtype=torch.float32, device="cpu")
        return (out,)

class InvertMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "invert"

    def invert(self, mask):
        out = 1.0 - mask
        return (out,)

class CropMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "crop"

    def crop(self, mask, x, y, width, height):
        out = mask[y:y + height, x:x + width]
        return (out,)

class MaskComposite:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "destination": ("MASK",),
                "source": ("MASK",),
                "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
space-nuko's avatar
space-nuko committed
194
                "operation": (["multiply", "add", "subtract", "and", "or", "xor"],),
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "combine"

    def combine(self, destination, source, x, y, operation):
        output = destination.clone()

        left, top = (x, y,)
        right, bottom = (min(left + source.shape[1], destination.shape[1]), min(top + source.shape[0], destination.shape[0]))
        visible_width, visible_height = (right - left, bottom - top,)

        source_portion = source[:visible_height, :visible_width]
        destination_portion = destination[top:bottom, left:right]

comfyanonymous's avatar
comfyanonymous committed
214
215
216
217
218
219
        if operation == "multiply":
            output[top:bottom, left:right] = destination_portion * source_portion
        elif operation == "add":
            output[top:bottom, left:right] = destination_portion + source_portion
        elif operation == "subtract":
            output[top:bottom, left:right] = destination_portion - source_portion
space-nuko's avatar
space-nuko committed
220
        elif operation == "and":
221
            output[top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float()
space-nuko's avatar
space-nuko committed
222
        elif operation == "or":
223
            output[top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float()
space-nuko's avatar
space-nuko committed
224
        elif operation == "xor":
225
            output[top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float()
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

        output = torch.clamp(output, 0.0, 1.0)

        return (output,)

class FeatherMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
            }
        }

    CATEGORY = "mask"

    RETURN_TYPES = ("MASK",)

    FUNCTION = "feather"

    def feather(self, mask, left, top, right, bottom):
        output = mask.clone()

        left = min(left, output.shape[1])
        right = min(right, output.shape[1])
        top = min(top, output.shape[0])
        bottom = min(bottom, output.shape[0])

        for x in range(left):
            feather_rate = (x + 1.0) / left
            output[:, x] *= feather_rate

        for x in range(right):
            feather_rate = (x + 1) / right
            output[:, -x] *= feather_rate

        for y in range(top):
            feather_rate = (y + 1) / top
            output[y, :] *= feather_rate

        for y in range(bottom):
            feather_rate = (y + 1) / bottom
            output[-y, :] *= feather_rate

        return (output,)



NODE_CLASS_MAPPINGS = {
    "LatentCompositeMasked": LatentCompositeMasked,
280
    "ImageCompositeMasked": ImageCompositeMasked,
281
    "MaskToImage": MaskToImage,
282
    "ImageToMask": ImageToMask,
283
284
285
286
287
288
289
    "SolidMask": SolidMask,
    "InvertMask": InvertMask,
    "CropMask": CropMask,
    "MaskComposite": MaskComposite,
    "FeatherMask": FeatherMask,
}

290
291
292
293
NODE_DISPLAY_NAME_MAPPINGS = {
    "ImageToMask": "Convert Image to Mask",
    "MaskToImage": "Convert Mask to Image",
}