ops.py 7.37 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Stability AI

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""

comfyanonymous's avatar
comfyanonymous committed
19
import torch
20
21
22
23
import comfy.model_management

def cast_bias_weight(s, input):
    bias = None
comfyanonymous's avatar
comfyanonymous committed
24
    non_blocking = comfy.model_management.device_should_use_non_blocking(input.device)
25
26
    if s.bias is not None:
        bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
27
28
        if s.bias_function is not None:
            bias = s.bias_function(bias)
29
    weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
30
31
    if s.weight_function is not None:
        weight = s.weight_function(weight)
32
33
    return weight, bias

comfyanonymous's avatar
comfyanonymous committed
34
35
36
37
class CastWeightBiasOp:
    comfy_cast_weights = False
    weight_function = None
    bias_function = None
comfyanonymous's avatar
comfyanonymous committed
38

comfyanonymous's avatar
comfyanonymous committed
39
class disable_weight_init:
comfyanonymous's avatar
comfyanonymous committed
40
    class Linear(torch.nn.Linear, CastWeightBiasOp):
comfyanonymous's avatar
comfyanonymous committed
41
42
        def reset_parameters(self):
            return None
43

44
45
46
47
48
49
50
51
52
53
        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.linear(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

54
55
56
57
58
59
60
61
62
63
64
65
66
67
    class Conv1d(torch.nn.Conv1d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

comfyanonymous's avatar
comfyanonymous committed
68
    class Conv2d(torch.nn.Conv2d, CastWeightBiasOp):
comfyanonymous's avatar
comfyanonymous committed
69
70
        def reset_parameters(self):
            return None
71

72
73
74
75
76
77
78
79
80
81
        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

comfyanonymous's avatar
comfyanonymous committed
82
    class Conv3d(torch.nn.Conv3d, CastWeightBiasOp):
comfyanonymous's avatar
comfyanonymous committed
83
84
        def reset_parameters(self):
            return None
comfyanonymous's avatar
comfyanonymous committed
85

86
87
88
89
90
91
92
93
94
95
        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

comfyanonymous's avatar
comfyanonymous committed
96
    class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp):
comfyanonymous's avatar
comfyanonymous committed
97
98
        def reset_parameters(self):
            return None
99

100
101
102
103
104
105
106
107
108
109
110
        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)


comfyanonymous's avatar
comfyanonymous committed
111
    class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
comfyanonymous's avatar
comfyanonymous committed
112
113
        def reset_parameters(self):
            return None
114

115
        def forward_comfy_cast_weights(self, input):
comfyanonymous's avatar
comfyanonymous committed
116
117
118
119
120
            if self.weight is not None:
                weight, bias = cast_bias_weight(self, input)
            else:
                weight = None
                bias = None
121
122
123
124
125
126
127
128
            return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

comfyanonymous's avatar
comfyanonymous committed
129
    class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
comfyanonymous's avatar
comfyanonymous committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input, output_size=None):
            num_spatial_dims = 2
            output_padding = self._output_padding(
                input, output_size, self.stride, self.padding, self.kernel_size,
                num_spatial_dims, self.dilation)

            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.conv_transpose2d(
                input, weight, bias, self.stride, self.padding,
                output_padding, self.groups, self.dilation)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input, output_size=None):
            num_spatial_dims = 1
            output_padding = self._output_padding(
                input, output_size, self.stride, self.padding, self.kernel_size,
                num_spatial_dims, self.dilation)

            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.conv_transpose1d(
                input, weight, bias, self.stride, self.padding,
                output_padding, self.groups, self.dilation)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

comfyanonymous's avatar
comfyanonymous committed
171
172
173
174
175
176
177
178
    @classmethod
    def conv_nd(s, dims, *args, **kwargs):
        if dims == 2:
            return s.Conv2d(*args, **kwargs)
        elif dims == 3:
            return s.Conv3d(*args, **kwargs)
        else:
            raise ValueError(f"unsupported dimensions: {dims}")
179

180

comfyanonymous's avatar
comfyanonymous committed
181
182
class manual_cast(disable_weight_init):
    class Linear(disable_weight_init.Linear):
183
        comfy_cast_weights = True
184

185
186
187
    class Conv1d(disable_weight_init.Conv1d):
        comfy_cast_weights = True

comfyanonymous's avatar
comfyanonymous committed
188
    class Conv2d(disable_weight_init.Conv2d):
189
        comfy_cast_weights = True
190

comfyanonymous's avatar
comfyanonymous committed
191
    class Conv3d(disable_weight_init.Conv3d):
192
        comfy_cast_weights = True
193

comfyanonymous's avatar
comfyanonymous committed
194
    class GroupNorm(disable_weight_init.GroupNorm):
195
        comfy_cast_weights = True
196

comfyanonymous's avatar
comfyanonymous committed
197
    class LayerNorm(disable_weight_init.LayerNorm):
198
        comfy_cast_weights = True
comfyanonymous's avatar
comfyanonymous committed
199
200
201

    class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
        comfy_cast_weights = True
202
203
204

    class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
        comfy_cast_weights = True