ops.py 2.15 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
from contextlib import contextmanager
comfyanonymous's avatar
comfyanonymous committed
3

comfyanonymous's avatar
comfyanonymous committed
4
5
6
7
class disable_weight_init:
    class Linear(torch.nn.Linear):
        def reset_parameters(self):
            return None
8

comfyanonymous's avatar
comfyanonymous committed
9
10
11
    class Conv2d(torch.nn.Conv2d):
        def reset_parameters(self):
            return None
12

comfyanonymous's avatar
comfyanonymous committed
13
14
15
    class Conv3d(torch.nn.Conv3d):
        def reset_parameters(self):
            return None
comfyanonymous's avatar
comfyanonymous committed
16

comfyanonymous's avatar
comfyanonymous committed
17
18
19
    class GroupNorm(torch.nn.GroupNorm):
        def reset_parameters(self):
            return None
20

comfyanonymous's avatar
comfyanonymous committed
21
22
23
    class LayerNorm(torch.nn.LayerNorm):
        def reset_parameters(self):
            return None
24

comfyanonymous's avatar
comfyanonymous committed
25
26
27
28
29
30
31
32
    @classmethod
    def conv_nd(s, dims, *args, **kwargs):
        if dims == 2:
            return s.Conv2d(*args, **kwargs)
        elif dims == 3:
            return s.Conv3d(*args, **kwargs)
        else:
            raise ValueError(f"unsupported dimensions: {dims}")
33

34
35
36
37
38
39
40
def cast_bias_weight(s, input):
    bias = None
    if s.bias is not None:
        bias = s.bias.to(device=input.device, dtype=input.dtype)
    weight = s.weight.to(device=input.device, dtype=input.dtype)
    return weight, bias

comfyanonymous's avatar
comfyanonymous committed
41
42
class manual_cast(disable_weight_init):
    class Linear(disable_weight_init.Linear):
43
44
45
46
        def forward(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.linear(input, weight, bias)

comfyanonymous's avatar
comfyanonymous committed
47
    class Conv2d(disable_weight_init.Conv2d):
48
49
50
51
        def forward(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

comfyanonymous's avatar
comfyanonymous committed
52
    class Conv3d(disable_weight_init.Conv3d):
53
54
55
56
        def forward(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

comfyanonymous's avatar
comfyanonymous committed
57
    class GroupNorm(disable_weight_init.GroupNorm):
58
59
60
61
        def forward(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)

comfyanonymous's avatar
comfyanonymous committed
62
    class LayerNorm(disable_weight_init.LayerNorm):
63
64
65
        def forward(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)