openaimodel.py 26.6 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
from abc import abstractmethod
import math

import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F

comfyanonymous's avatar
comfyanonymous committed
9
from .util import (
comfyanonymous's avatar
comfyanonymous committed
10
11
12
13
14
15
    checkpoint,
    avg_pool_nd,
    zero_module,
    normalization,
    timestep_embedding,
)
comfyanonymous's avatar
comfyanonymous committed
16
17
from ..attention import SpatialTransformer
from comfy.ldm.util import exists
comfyanonymous's avatar
comfyanonymous committed
18
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
19
20
21
22
23
24
25
26
27
28
29
30

class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """

31
32
33
34
35
36
37
#This is needed because accelerate makes a copy of transformer_options which breaks "current_index"
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None):
    for layer in ts:
        if isinstance(layer, TimestepBlock):
            x = layer(x, emb)
        elif isinstance(layer, SpatialTransformer):
            x = layer(x, context, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
38
39
            if "current_index" in transformer_options:
                transformer_options["current_index"] += 1
40
41
42
43
44
        elif isinstance(layer, Upsample):
            x = layer(x, output_shape=output_shape)
        else:
            x = layer(x)
    return x
comfyanonymous's avatar
comfyanonymous committed
45

comfyanonymous's avatar
comfyanonymous committed
46
47
48
49
50
51
52
53
54
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(self, *args, **kwargs):
        return forward_timestep_embed(self, *args, **kwargs)

comfyanonymous's avatar
comfyanonymous committed
55
56
57
58
59
60
61
62
63
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

comfyanonymous's avatar
comfyanonymous committed
64
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
65
66
67
68
69
70
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
comfyanonymous's avatar
comfyanonymous committed
71
            self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
72

73
    def forward(self, x, output_shape=None):
comfyanonymous's avatar
comfyanonymous committed
74
75
        assert x.shape[1] == self.channels
        if self.dims == 3:
76
77
78
79
            shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
            if output_shape is not None:
                shape[1] = output_shape[3]
                shape[2] = output_shape[4]
comfyanonymous's avatar
comfyanonymous committed
80
        else:
81
82
83
84
85
86
            shape = [x.shape[2] * 2, x.shape[3] * 2]
            if output_shape is not None:
                shape[0] = output_shape[2]
                shape[1] = output_shape[3]

        x = F.interpolate(x, size=shape, mode="nearest")
comfyanonymous's avatar
comfyanonymous committed
87
88
89
90
91
92
93
94
95
96
97
98
99
        if self.use_conv:
            x = self.conv(x)
        return x

class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

comfyanonymous's avatar
comfyanonymous committed
100
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
101
102
103
104
105
106
107
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
comfyanonymous's avatar
comfyanonymous committed
108
            self.op = operations.conv_nd(
109
                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
            )
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
148
149
        dtype=None,
        device=None,
comfyanonymous's avatar
comfyanonymous committed
150
        operations=comfy.ops
comfyanonymous's avatar
comfyanonymous committed
151
152
153
154
155
156
157
158
159
160
161
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
162
            nn.GroupNorm(32, channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
163
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
164
            operations.conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
165
166
167
168
169
        )

        self.updown = up or down

        if up:
170
171
            self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
172
        elif down:
173
174
            self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
175
176
177
178
179
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
180
            operations.Linear(
comfyanonymous's avatar
comfyanonymous committed
181
                emb_channels,
182
                2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
183
184
185
            ),
        )
        self.out_layers = nn.Sequential(
186
            nn.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
187
188
189
            nn.SiLU(),
            nn.Dropout(p=dropout),
            zero_module(
comfyanonymous's avatar
comfyanonymous committed
190
                operations.conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
191
192
193
194
195
196
            ),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
comfyanonymous's avatar
comfyanonymous committed
197
            self.skip_connection = operations.conv_nd(
198
                dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
199
200
            )
        else:
comfyanonymous's avatar
comfyanonymous committed
201
            self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.
        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        return checkpoint(
            self._forward, (x, emb), self.parameters(), self.use_checkpoint
        )


    def _forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = th.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h

237
238
239
240
241
242
243
244
class Timestep(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, t):
        return timestep_embedding(t, self.dim)

comfyanonymous's avatar
comfyanonymous committed
245
246
247
248
def apply_control(h, control, name):
    if control is not None and name in control and len(control[name]) > 0:
        ctrl = control[name].pop()
        if ctrl is not None:
249
250
251
252
            try:
                h += ctrl
            except:
                print("warning control could not be applied", h.shape, ctrl.shape)
comfyanonymous's avatar
comfyanonymous committed
253
    return h
254

comfyanonymous's avatar
comfyanonymous committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
class UNetModel(nn.Module):
    """
    The full UNet model with attention and timestep embedding.
    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
294
        dtype=th.float32,
comfyanonymous's avatar
comfyanonymous committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,    # custom transformer support
        transformer_depth=1,              # custom transformer support
        context_dim=None,                 # custom transformer support
        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
310
        adm_in_channels=None,
311
        transformer_depth_middle=None,
312
        transformer_depth_output=None,
313
        device=None,
comfyanonymous's avatar
comfyanonymous committed
314
        operations=comfy.ops,
comfyanonymous's avatar
comfyanonymous committed
315
316
    ):
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
317
        assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
comfyanonymous's avatar
comfyanonymous committed
318
319
320
321
322
        if use_spatial_transformer:
            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
323
324
325
            # from omegaconf.listconfig import ListConfig
            # if type(context_dim) == ListConfig:
            #     context_dim = list(context_dim)
comfyanonymous's avatar
comfyanonymous committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
340

comfyanonymous's avatar
comfyanonymous committed
341
342
343
344
345
346
347
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
348

comfyanonymous's avatar
comfyanonymous committed
349
350
351
352
353
354
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)

355
356
357
        transformer_depth = transformer_depth[:]
        transformer_depth_output = transformer_depth_output[:]

comfyanonymous's avatar
comfyanonymous committed
358
359
360
361
362
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
363
        self.dtype = dtype
comfyanonymous's avatar
comfyanonymous committed
364
365
366
367
368
369
370
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
371
            operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
372
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
373
            operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
374
375
376
377
378
379
380
381
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
382
383
384
385
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
386
                        operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
387
                        nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
388
                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
389
390
                    )
                )
comfyanonymous's avatar
comfyanonymous committed
391
392
393
394
395
396
            else:
                raise ValueError()

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
397
                    operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
                )
            ]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
416
417
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
418
                        operations=operations,
comfyanonymous's avatar
comfyanonymous committed
419
420
421
                    )
                ]
                ch = mult * model_channels
422
423
                num_transformers = transformer_depth.pop(0)
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
comfyanonymous's avatar
comfyanonymous committed
438
                        layers.append(SpatialTransformer(
439
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
440
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
comfyanonymous's avatar
comfyanonymous committed
441
                                use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
460
461
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
462
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
463
464
465
                        )
                        if resblock_updown
                        else Downsample(
comfyanonymous's avatar
comfyanonymous committed
466
                            ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            #num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
483
        mid_block = [
comfyanonymous's avatar
comfyanonymous committed
484
485
486
487
488
489
490
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
491
492
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
493
                operations=operations
494
495
496
            )]
        if transformer_depth_middle >= 0:
            mid_block += [SpatialTransformer(  # always uses a self-attn
497
                            ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
498
                            disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
comfyanonymous's avatar
comfyanonymous committed
499
                            use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
500
501
502
503
504
505
506
507
                        ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
508
509
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
510
                operations=operations
511
512
            )]
        self.middle_block = TimestepEmbedSequential(*mid_block)
comfyanonymous's avatar
comfyanonymous committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(self.num_res_blocks[level] + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,
                        time_embed_dim,
                        dropout,
                        out_channels=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
528
529
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
530
                        operations=operations
comfyanonymous's avatar
comfyanonymous committed
531
532
533
                    )
                ]
                ch = model_channels * mult
534
535
                num_transformers = transformer_depth_output.pop()
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
                        layers.append(
comfyanonymous's avatar
comfyanonymous committed
551
                            SpatialTransformer(
552
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
553
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
comfyanonymous's avatar
comfyanonymous committed
554
                                use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
                            )
                        )
                if level and i == self.num_res_blocks[level]:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
569
570
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
571
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
572
573
                        )
                        if resblock_updown
comfyanonymous's avatar
comfyanonymous committed
574
                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
575
576
577
578
579
580
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
581
            nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
582
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
583
            zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
comfyanonymous's avatar
comfyanonymous committed
584
585
586
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
587
            nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
588
            operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
589
590
591
            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
        )

592
    def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
593
594
595
596
597
598
599
600
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param context: conditioning plugged in via crossattn
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """
601
        transformer_options["original_shape"] = list(x.shape)
602
        transformer_options["current_index"] = 0
603
        transformer_patches = transformer_options.get("patches", {})
604

comfyanonymous's avatar
comfyanonymous committed
605
606
607
608
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
609
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
comfyanonymous's avatar
comfyanonymous committed
610
611
612
613
614
615
616
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

        h = x.type(self.dtype)
comfyanonymous's avatar
comfyanonymous committed
617
        for id, module in enumerate(self.input_blocks):
618
            transformer_options["block"] = ("input", id)
619
            h = forward_timestep_embed(module, h, emb, context, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
620
            h = apply_control(h, control, 'input')
621
622
623
624
625
            if "input_block_patch" in transformer_patches:
                patch = transformer_patches["input_block_patch"]
                for p in patch:
                    h = p(h, transformer_options)

comfyanonymous's avatar
comfyanonymous committed
626
            hs.append(h)
627
628
629
630
            if "input_block_patch_after_skip" in transformer_patches:
                patch = transformer_patches["input_block_patch_after_skip"]
                for p in patch:
                    h = p(h, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
631

632
        transformer_options["block"] = ("middle", 0)
633
        h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
634
        h = apply_control(h, control, 'middle')
comfyanonymous's avatar
comfyanonymous committed
635

636
637
        for id, module in enumerate(self.output_blocks):
            transformer_options["block"] = ("output", id)
comfyanonymous's avatar
comfyanonymous committed
638
            hsp = hs.pop()
comfyanonymous's avatar
comfyanonymous committed
639
            hsp = apply_control(hsp, control, 'output')
640

641
642
643
644
645
            if "output_block_patch" in transformer_patches:
                patch = transformer_patches["output_block_patch"]
                for p in patch:
                    h, hsp = p(h, hsp, transformer_options)

comfyanonymous's avatar
comfyanonymous committed
646
            h = th.cat([h, hsp], dim=1)
comfyanonymous's avatar
comfyanonymous committed
647
            del hsp
648
649
650
651
            if len(hs) > 0:
                output_shape = hs[-1].shape
            else:
                output_shape = None
652
            h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape)
comfyanonymous's avatar
comfyanonymous committed
653
654
655
656
657
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)