adapter.py 9.82 KB
Newer Older
1
2
3
#taken from https://github.com/TencentARC/T2I-Adapter
import torch
import torch.nn as nn
4
5
from collections import OrderedDict

6
7
8
9
10
11
12
13
14
15
16
17
18

def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

19

20
21
22
23
24
25
26
27
28
29
30
31
def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

32

33
34
35
36
37
38
39
40
41
class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

42
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.op = conv_nd(
                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
            )
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
59
60
61
62
63
64
        if not self.use_conv:
            padding = [x.shape[2] % 2, x.shape[3] % 2]
            self.op.padding = padding

        x = self.op(x)
        return x
65
66
67
68
69


class ResnetBlock(nn.Module):
    def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
        super().__init__()
70
71
        ps = ksize // 2
        if in_c != out_c or sk == False:
72
73
74
75
76
77
78
            self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
        else:
            # print('n_in')
            self.in_conv = None
        self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
        self.act = nn.ReLU()
        self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
79
        if sk == False:
80
81
82
83
84
85
86
87
88
89
90
            self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
        else:
            self.skep = None

        self.down = down
        if self.down == True:
            self.down_opt = Downsample(in_c, use_conv=use_conv)

    def forward(self, x):
        if self.down == True:
            x = self.down_opt(x)
91
        if self.in_conv is not None:  # edit
92
93
94
95
96
97
98
99
100
101
102
103
            x = self.in_conv(x)

        h = self.block1(x)
        h = self.act(h)
        h = self.block2(h)
        if self.skep is not None:
            return h + self.skep(x)
        else:
            return h + x


class Adapter(nn.Module):
comfyanonymous's avatar
comfyanonymous committed
104
    def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, xl=True):
105
        super(Adapter, self).__init__()
106
        self.unshuffle_amount = 8
comfyanonymous's avatar
comfyanonymous committed
107
108
109
110
        resblock_no_downsample = []
        resblock_downsample = [3, 2, 1]
        self.xl = xl
        if self.xl:
111
            self.unshuffle_amount = 16
comfyanonymous's avatar
comfyanonymous committed
112
113
114
            resblock_no_downsample = [1]
            resblock_downsample = [2]

115
116
        self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
        self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
117
118
119
120
121
        self.channels = channels
        self.nums_rb = nums_rb
        self.body = []
        for i in range(len(channels)):
            for j in range(nums_rb):
comfyanonymous's avatar
comfyanonymous committed
122
                if (i in resblock_downsample) and (j == 0):
123
124
                    self.body.append(
                        ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
comfyanonymous's avatar
comfyanonymous committed
125
126
127
                elif (i in resblock_no_downsample) and (j == 0):
                    self.body.append(
                        ResnetBlock(channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
128
                else:
129
130
                    self.body.append(
                        ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
131
        self.body = nn.ModuleList(self.body)
132
        self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
133
134
135
136
137
138
139
140
141

    def forward(self, x):
        # unshuffle
        x = self.unshuffle(x)
        # extract features
        features = []
        x = self.conv_in(x)
        for i in range(len(self.channels)):
            for j in range(self.nums_rb):
142
                idx = i * self.nums_rb + j
143
                x = self.body[idx](x)
comfyanonymous's avatar
comfyanonymous committed
144
145
146
147
148
149
150
151
152
153
            if self.xl:
                features.append(None)
                if i == 0:
                    features.append(None)
                    features.append(None)
                if i == 2:
                    features.append(None)
            else:
                features.append(None)
                features.append(None)
154
155
            features.append(x)

comfyanonymous's avatar
comfyanonymous committed
156
157
158
159
160
161
162
        features = features[::-1]

        if self.xl:
            return {"input": features[1:], "middle": features[:1]}
        else:
            return {"input": features}

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


class QuickGELU(nn.Module):

    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):

    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(
            OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()),
                         ("c_proj", nn.Linear(d_model * 4, d_model))]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x: torch.Tensor):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x: torch.Tensor):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class StyleAdapter(nn.Module):

    def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4):
        super().__init__()

        scale = width ** -0.5
        self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)])
        self.num_token = num_token
        self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale)
        self.ln_post = LayerNorm(width)
        self.ln_pre = LayerNorm(width)
        self.proj = nn.Parameter(scale * torch.randn(width, context_dim))

    def forward(self, x):
        # x shape [N, HW+1, C]
        style_embedding = self.style_embedding + torch.zeros(
            (x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device)
        x = torch.cat([x, style_embedding], dim=1)
        x = self.ln_pre(x)
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer_layes(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        x = self.ln_post(x[:, -self.num_token:, :])
        x = x @ self.proj

        return x


class ResnetBlock_light(nn.Module):
    def __init__(self, in_c):
        super().__init__()
        self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1)
        self.act = nn.ReLU()
        self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1)

    def forward(self, x):
        h = self.block1(x)
        h = self.act(h)
        h = self.block2(h)

        return h + x


class extractor(nn.Module):
    def __init__(self, in_c, inter_c, out_c, nums_rb, down=False):
        super().__init__()
        self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0)
        self.body = []
        for _ in range(nums_rb):
            self.body.append(ResnetBlock_light(inter_c))
        self.body = nn.Sequential(*self.body)
        self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0)
        self.down = down
        if self.down == True:
            self.down_opt = Downsample(in_c, use_conv=False)

    def forward(self, x):
        if self.down == True:
            x = self.down_opt(x)
        x = self.in_conv(x)
        x = self.body(x)
        x = self.out_conv(x)

        return x


class Adapter_light(nn.Module):
    def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
        super(Adapter_light, self).__init__()
273
274
275
        self.unshuffle_amount = 8
        self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
        self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
276
277
278
        self.channels = channels
        self.nums_rb = nums_rb
        self.body = []
comfyanonymous's avatar
comfyanonymous committed
279
280
        self.xl = False

281
282
283
284
285
286
287
288
289
290
291
292
293
294
        for i in range(len(channels)):
            if i == 0:
                self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False))
            else:
                self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True))
        self.body = nn.ModuleList(self.body)

    def forward(self, x):
        # unshuffle
        x = self.unshuffle(x)
        # extract features
        features = []
        for i in range(len(self.channels)):
            x = self.body[i](x)
295
296
            features.append(None)
            features.append(None)
297
298
            features.append(x)

comfyanonymous's avatar
comfyanonymous committed
299
        return {"input": features[::-1]}